國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103 / GEAI 1215: Linear Algebra I

第一次期中考

October 8, 2018

Midterm 1

姓名 Name: Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

6 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 30 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- \bullet Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.

1. [1pt] Suppose $S = \{\overrightarrow{p_1}, \overrightarrow{p_2}, \dots, \overrightarrow{p_n}\}$ is a set of n vectors over \mathbb{R} . Write down the definition of that " \overrightarrow{v} is a linear combination of vectors in S."

$$\vec{V} = C_1 \vec{P_1} + C_2 \vec{P_2} + \dots + C_n \vec{P_n}$$

for some $C_1, \dots, C_n \in \mathbb{R}$

2. [1pt] Suppose $\overrightarrow{p} = (p_1, \dots, p_n)$ and $\overrightarrow{q} = (q_1, \dots, q_n)$ are two vectors in \mathbb{R}^n . Write down the definition of the *inner product* of \overrightarrow{p} and $\overrightarrow{q} = (q_1, \dots, q_n)$ are $\overrightarrow{q} = (q_1, \dots, q_n)$ are two vectors in

$$\vec{a} \cdot \vec{b} = a_1 b_1 + \dots + a_n b_n$$

3. [2pt] Give a linear system of three equations in reduced echelon form with three free variables, and indicate the free variables. [The answer is not unique. You only need to find one.]

4. [2pt] Suppose A is a 5×5 nonsingular matrix. What is the minimum number of nonzero entries on A? [Justify your answer with an example of such A and explain why the number of nonzero entries cannot be fewer.]

For example,
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

If only 4 nonzero entries, at least one row is all zero singular.

5. Let

$$\vec{u} = (1, 1, 0, 0,) \text{ and }$$

 $\vec{v} = (\sqrt{3}, \sqrt{3}, 1, 1).$

(a) [1pt] Find the length $|\vec{u}|$.

$$|\vec{u}| = \sqrt{\frac{1}{1+1+0^2+0^2}} = \sqrt{\frac{1}{2}}$$

(b) [1pt] Find the length $|\vec{v}|$.

$$|\vec{V}| = \sqrt{3+3+1+1} = \sqrt{8} = 2\sqrt{2}$$

(c) [2pt] Find the angle between \vec{u} and \vec{v} .

$$\vec{u} \cdot \vec{v} = \sqrt{3} + \sqrt{3} = 2\sqrt{3}$$

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{2\sqrt{3}}{\sqrt{2} \cdot 2\sqrt{2}} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

(d) [2pt] Find a vector \vec{p} that is orthogonal to both of \vec{u} and \vec{v} . [The answer is not unique. You only need to find one.]

Suppose
$$\vec{p} = (x, y, \overline{z}, w)$$
.
 $\vec{p} \cdot \vec{u} = x + y = 0$
 $\vec{p} \cdot \vec{v} = \sqrt{3}x + \sqrt{3}y + \overline{z} + w = 0$

Any solution is an answer.

For example,
$$\vec{p} = (0, 0, 1, -1)$$

6. [6pt] Find the general solution of the following linear system.

$$\begin{cases} w + 3x + y - 2z = -1 \\ 2w + 6x + 2y - 4z = -7 \\ 3w + 9x + 3y - 6z = -8 -3 \end{cases}$$

That is, find \overrightarrow{p} and $\overrightarrow{\beta_1}, \ldots, \overrightarrow{\beta_k}$ such that

$$\{\overrightarrow{p} + c_1\overrightarrow{\beta_1} + \dots + c_k\overrightarrow{\beta_k} : c_1, \dots, c_k \in \mathbb{R}\}$$

is the set of all solutions.

增度矩阵
$$\begin{pmatrix}
1 & 3 & 1 & -2 & | & -1 \\
2 & 6 & 3 & -45 & | & -7 \\
3 & 9 & 3 & -6 & | & -8 \\
A
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 3 & 7 & | & -2 & | & -1 \\
0 & 0 & 1 & | & -5 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\uparrow$$

• Set
$$x=8=0$$
, solve for \overrightarrow{p} with $A\overrightarrow{p} = \overrightarrow{b}$.

$$W = 4$$

$$y = -5$$

$$p = \begin{pmatrix} 1 & N \\ X & y \\ Z & 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -5 \\ 0 \end{pmatrix}$$

• set
$$x=1, z=0$$
, solve for β_1 with $A\beta_1 = 0$

$$W + 3 = 0 \Rightarrow \beta = \begin{pmatrix} w \\ x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

* set
$$x=0$$
, $z=1$, solve for β_2 with $A\beta_2 = 0$.

W

 $-1 = 0$
 $y = 0$
 $y = 0$
 $y = 0$

General solution =
$$\begin{cases} \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix} + c_1 \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : c_1, c_2 \in \mathbb{R} \end{cases}$$

7. [6pt] Let

It is known that R can be obtained from A by performing some row operations. Find a matrix C such that CA = R. [The answer is not unique. You only need to find one.]

$$A \xrightarrow{f_1} \begin{pmatrix} -2f_1 + f_2 \\ f_1 + f_3 \end{pmatrix} \begin{pmatrix} 1 & 5 & 4 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{-3f_2 + f_1} \begin{pmatrix} 1 & 5 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A = R$$

$$\begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A = R$$

$$\begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} A = R$$

$$C = \begin{pmatrix} 7 & -3 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} A = R$$

8. [6pt] Find a matrix A whose reduced echelon form is the reduced echelon form of

$$\begin{bmatrix}
1 & 1 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

and every entry of A is nonzero. [The answer is not unique. You only need to find one.]

Key: do any row operations to make entries nonzero.

$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{f_2 + f_1} \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{f_1+f_2}{f_1+f_3} \left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & 2 & -4 \\
1 & 1 & 1 & -1
\end{array}\right)$$
A

9. [extra 2pt] There are three types of 2×2 elementary matrices:

$$(1) \ \rho_i \leftrightarrow \rho_j \colon \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(2)
$$k\rho_i$$
: $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$

(3)
$$k\rho_i + \rho_j$$
: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Find four matrices E_1, E_2, E_3, E_4 of type (2) or type (3) such that

$$E_4 E_3 E_2 E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

[This means the first operation (swapping) can be done by only using the second and the third operations.]

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{f_1 + f_2} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \xrightarrow{-f_2 + f_1} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \xrightarrow{f_1 + f_2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\frac{-f_1}{} > \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Page	Points	Score
1	6	
2	6	
3	6	
4	6	
5	6	
6	2	
Total	30 (+2)	