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1. [1pt] Suppose S = {p1,D32,...,Pn} is a set of n vectors over R. Write
down the definition of that “¥ is a linear combination of vectors in S.”

- — - -~
V= CI‘FI+C2F2,+ -~ +Chry\
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2. [Lpt] Suppose Betprrrripal and § = (gr,..

., qn) are two vectors in
R™. Write down the definition of the inner product of ‘ﬁaand ‘q*\ﬁ
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3. [2pt] Give a linear system of three equations in reduced echelon
form with three free variables, and indicate the free variables. [The
answer is not unique. You only need to find one.]

X TUFVTW =0
Y TA+VAW =0
Z T urvtwW =90

7‘;66:%,\/ W

4. [2pt] Suppose A is a 5 x 5 nonsingular matrix. What is the minimum

number of nonzero entries on A? [Justify your answer with an example of
such A and explain why the number of nonzero entries cannot be fewer.]

m7n7mmm = T nonZere entric§

OXMF)Q) I'f mﬂ‘j 4  nonzero en‘('n‘eﬁ)
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5. Let
u = (1,1,0,0,) and
T = (\/3' V3.1, 1)
(a) [1pt] Find the length |u].
lwl=Ji% 1% o0 =72

(b) [1pt] Find the length | 7.

Js =21

N[=J38+H\:

(c) [2pt] Find the angle between ¥ and ¥.
—):{\? = JE—FG = 25

(d) [2pt] Find a vector P that is orthogonal to both of @ and ¥. [The
answer is not unique. You only need to find one.]

S.,«ﬂ;ose 'F = C';(Jj,’z ,\’J) .
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(V)
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x = X+ Y
—
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£2+ﬁj+2+w

Sofution is an  answer
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6. [6pt] Find the general solution of the following linear system.
w+3r+ y—2z=-1
2w+6m+gy-—é&z:—7
3w+ 9z + 3y — 62 =<8 3

w N

That is, find P and ,51), e ,B.;: such that

{(P+abi++abr:ca,...,c €R}

is the set of all solutions.
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7. [6pt] Let
1 5 4 3 1540
A=12 10 8 7| andf{0 0 0 1
-1 -5 -4 -3 0000

It is known that R can be obtained from A by performing some row
operations. Find a matrix C such that CA = R. [The answer is not
unique. You only need to find one.|

~2f, t £ I & 4 2 _3f+F, ;) & %4 o0
A#;\ 0o 6 o ' ——y O © o /
S B o o 0 O © o o0 ©
-3 D
] v ] 0o | OO
0 fb OIO =2 | D A :R
00 | /] 0 | 0o |
—3f+P, f; th -2f, +f,

| -3 @ I o0
0 | O/"z‘ 0 A :‘)2
oo | I O |
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8. [6pt] Find a matrix A whose reduced echelon form is the-redueedecteton

110 2
001 -3
000 O

and every entry of A is nonzero. [The answer is not unique. You only
need to find one.

Kejz do N\'j yor o_Pwvd“*fMS To make CATHES He® you Zero .
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9. [extra 2pt] There are three types of 2 x 2 elementary matrices:

(1) pi > py: {(1) (1)]
i [ o4

1k 10
(3) kp; + pj: [O 1} or [k: J

Find four matrices Ey, Es, E3, E4 of type (2) or type (3) such that

01
E4E3E2E1 = {1 O} .

[This means the first operation (swapping) can be done by only using the
second and the third operations.]

0
!

keg: “nse crn(y Tﬂ’e (2) or D/,ae(;) fo obtain /?0,) ‘from ({7 /

[20) 25 () B2 )

-7 o |

(1)

‘{0 - o [ 0 //:‘g / 0 _/O/
/o/)/// o | ///' /o

E4 E} > E, 7

A Bef gp = S

[END]
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2 6
3 6
4 6
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6 2
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