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1. [5pt] Find the inverse of the matrix

A =


1 −1 −1 −4
2 −1 −1 −6
0 −1 0 −2
2 −2 −3 −7

 .
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2. [2pt] Suppose V is a vector space over R and S is a nonempty subset of
V . What property (or properties) you have to check in order to make
sure S is a subspace of V ?

3. [3pt] For each of V below, write T or F in the box to indicate V is a vector
space over R or not. If your answer is F, provide a brief reason of why V
is not a vector space.

(a) V =

{[
x
y

]
∈ R2 : x, y ∈ Z

}
.

Brief reason if F:

(b) V = {X ∈Mn×n : AX = 0}. Here Mn×n is the set of all n× n real
matrices, and A is a matrix in Mn×n.

Brief reason if F:

(c) V =


xy
z

 ∈ R3 : x2 + y2 + z2 = 0

.

Brief reason if F:

(d) V =


xy
z

 ∈ R3 : x + y + z = 1

.

Brief reason if F:
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4. [2pt] Let S = { #»v 1, . . . ,
#»v k} be a set of vectors in a vector space over R.

Write down the definition of that S is linearly independent. (Your answer
should be clear in mathematical sense instead of a descriptive sentence
in human language.)

5. [2pt] Find all possible solutions

c1c2
c3

 that satisfies

1 1 −1
2 −1 0
4 1 −2

c1c2
c3

 =

0
0
0

 .

6. [1pt] Is the set S =


1

2
4

 ,

 1
−1
1

 ,

−1
0
−2

 linearly independent? Pro-

vide your reason.
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7. [5pt] Let

V = span


1

2
3

 ,

3
6
9

 ,

1
3
3

 ,

−2
−5
−6


 .

Find a basis and the dimension of V .
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8. Let

A =

1 3 1 −2
2 6 3 −5
3 9 3 −6

 .

(a) [2pt] Find a basis and the dimension of the row space of A.

(b) [3pt] Find a basis and the dimension of the null space of A.
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9. [5pt] Suppose S = { #»w1, . . . ,
#»wk} is a set of nonzero vectors in Rn such

that #»wi · #»wj = 0 for any distinct i and j. (That is, any two vectors in S
are orthogonal to each other.) Show that S is linearly independent.
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10. [5pt] Let S = { #»w1, . . . ,
#»wk} be a set of vectors in a vector space over

R. Suppose S is linearly independent. Show that S ∪ { #»v } is linearly
independent if and only if the vector #»v is not in span(S).
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11. [extra 2pt] Let Sn be the set of all n× n real symmetric matrices. Let

A =

1 1 1
1 1 1
1 1 1

 and O =

0 0 0
0 0 0
0 0 0


be two matrices in S3. Find a basis for

V = {X ∈ S3 : AX = O}.

[END]
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