UNIVERSITY OF VICTORIA		Las	t name:_	
MATH 120: Precalculus Mathematics		Firs	t name:_	
Final exam	n April 10, 2018	V r	number:_	
Lecturer:	Jephian Lin	Page	Points	Score
	[A01 - CRN 21993]	1	7	
Contents:	cover page,	2	5	
	11 pages of questions,	3	6	
	blue instructions page at the end	4	3	
To be answered:	on the test paper	5	3	
Duration:	180 minutes	6	3	
		7	6	
		8	3	
		9	8	
		10	8	
		11	4	
		Total	56	

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **V number** before you start.
- Sign the **blue instruction page** now.
- The only calculator permitted is the Sharp EL-510R, EL-510RN or EL-510RNB. No other electronic devices are permitted.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.

1. Let f(x) be the function with the graph below.

- (a) [1pt] Find f(1) and f(3).
- (b) [1pt] Find the value(s) of x where f(x) is not defined.
- (c) [1pt] Find the *y*-intercept.
- (d) [1pt] Find the x-intercept(s).
- (e) [1pt] Solve f(x) > 0 and give your answer in interval notation.
- (f) [1pt] Find the intervals(s) on which f(x) increasing.
- (g) [1pt] Does this function have an inverse? Give a brief reason for your answer.

- 2. [1pt] Find the equation of the line with slope 5 that passes through (3, 2).
- 3. [1pt] Let A, B, C be the three lines drawn below.

Let m_A , m_B , and m_C be the slopes of Line A, Line B, and Line C, respectively. Find the order of them. That is, fill in the blanks with m_A , m_B , and m_C .

4. [1pt] Let $f(x) = x^2$. Compute and expand f(x - 1).

5. [2pt] Let $h(x) = (x^2 + 1)^3 + (x^2 + 1)^6$. Find f(x) and g(x) such that h(x) = f(g(x)).

- 6. Let $f(x) = x^2 2x 3$.
 - (a) [1pt] Write f(x) in vertex form. That is, find p and q such that

$$f(x) = (x+p)^2 + q.$$

- (b) [1pt] Find the minimum of f(x). Also, find the value of x at which this minimum occurs.
- (c) [1pt] Find all the roots of f(x).
- (d) [2pt] Plot the function f(x). [One point has been plotted for you.]

(e) [1pt] Solve f(x) < 0 and give your answer in interval notation.

7. [3pt] Let $f(x) = x^3 - 3x^2 + x + 5$. Given that x = -1 is one of the roots, find the other two (imaginary) roots.

- 8. Let $f(x) = \frac{(x-3)(x+2)}{(x+1)(x+2)}$.
 - (a) [1pt] Find all value(s) of x where f(x) = 0.
 - (b) [1pt] Find all value(s) of x where f(x) is not defined.
 - (c) [1pt] When x is very close to -2, the value of f(x) will be very close to the number _____. [You may use your calculator to guess an answer.]

9. [1pt] Find an angle α such that $\sin(\alpha) = \cos(\alpha)$ with $0^{\circ} \le \alpha \le 90^{\circ}$. [There is only one solution; try the special angles you know.]

10. [1pt] Find a value x such that $\arcsin(x) = \arccos(x)$. [There is only one solution; think about Problem 9.]

11. [1pt] The point P is on the terminal side of 60° and of distance 2 to the origin; see the graph below. Find the coordinates of P.

12. [2pt] Suppose x = 8, y = 6, and α is an acute angle. Find the values of r, $\sin(\alpha)$, $\cos(\alpha)$, and $\tan(\alpha)$.

13. [2pt] Use the information given in the picture below to find the height h of the building. [Approximately, $\sin(20^\circ) = 0.34202$, $\cos(20^\circ) = 0.93969$, and $\tan(20^\circ) = 0.36397$; round your answer to the nearest hundredth.]

14. [2pt] Use your calculator to solve $\tan(\alpha) = 2$ with $180^{\circ} \le \alpha \le 270^{\circ}$. [Round your answer to the nearest hundredth.]

15. Consider the formulas

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta).$$

(a) [2pt] Use the formulas with $\alpha = 45^{\circ}$ and $\beta = 30^{\circ}$ to find the exact values of $\sin(15^{\circ})$ and $\cos(15^{\circ})$. [You don't have to rationalise your answers, but numerical answers are not accepted.]

(b) [1pt] Use part (a) to find the exact values of $\cos(165^{\circ})$ and $\sin(165^{\circ})$. [Numerical answers are not accepted.]

- 16. [1pt] Find the values of $9^{-\frac{1}{2}}$ and $8^{\frac{2}{3}}$.
- 17. [1pt] Find the values of $\log_9(\frac{1}{3})$ and $\log_8(4)$.
- 18. [2pt] Determine the sign (positive or negative) of each of e^4 , e^{-3} , $-e^2$, and $-e^{-1}$.
- 19. [1pt] Solve $e^{x^2-1} = 0$. [If there is no solution to this equation, you may write "no solution".]
- 20. [1pt] Provided that $\pi = 3.14 \cdots$, $\pi^2 = 9.89 \cdots$, and $\pi^3 = 31.00 \cdots$, find the integer part of $\log_{\pi}(10)$.
- 21. [2pt] A bank offers a certificate deposit (CD) with 2.4% annual interest rate, and the interest is compounded monthly. Suppose you purchased \$1000 of this CD for 5 years. What is your ending balance? [Round your answer to the nearest hundredth.]

22. [1pt] Use your calculator to find $\log_{1.1}(2)$. [Round your answer to the nearest hundredth.]

23. [2pt] Solve $2^{3x+1} = 1024$.

24. [2pt] Solve $\ln(x^3) - \ln(x^2) = 2$.

25. [3pt] Solve $2^{5x+1} = 3^{2x+3}$. [Hint: First apply ln to both sides.]

26. [4pt] Match the graphs to the functions by writing the appropriate letter (A-H) in the blank.

function	graph
$\ln(x)$	
e^x	
$(x-1)^2 - 3$	
$-(x+1)^2+3$	

function	graph
$\sin(x)$	
$\cos(x)$	
$\frac{x-1}{x-1}$	
$\frac{x}{ x }$	
x	

