國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (二)

MATH 104 / GEAI 1209: Linear Algebra II

期末考

June 17, 2019

Final Examination

姓名 Name : _____ Solution

solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

 ${f 9}$ pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 35 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- ✓ Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- 一可用中文或英文作答

1. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$ and define the homomorphism $f: \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ by $f(\mathbf{M}) = \mathbf{A}\mathbf{M}$ for all $\mathbf{M} \in \mathcal{M}_{2\times 2}$. Find a basis of the null space of f and a basis of the range of f.

$$f(M) = AM \text{ for all } M \in \mathcal{M}_{2\times 2}. \text{ Find a basis of the null space of } f \text{ and a basis of the range of } f.$$

$$Let \mathcal{B} = \begin{cases} \begin{pmatrix} \cdot & 0 \\ \cdot & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Span

I where $(F) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is a part of the null space of F and F and F are the null space of F are the null space of F and F are the null space of F and F are the null space of F are the null space of F are the null space of F and F are the null space of F

$$\Rightarrow \text{nulspace}(f) = \text{span} \left\{ \begin{pmatrix} 20 \\ 10 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

$$\Rightarrow \text{pasis}$$

2. Let \mathbf{L}_n be the $n \times n$ matrix whose i, j-entry is -2 if i = j, 1 if |i - j| = 1, and 0 otherwise. For example,

$$\mathbf{L}_{2} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}, \mathbf{L}_{3} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}, \text{ and } \mathbf{L}_{4} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}.$$

(a) [1pt] Compute $\det(\mathbf{L}_n)$ for n=2,3.

(b) [2pt] Find a recurrence relation for $\det(\mathbf{L}_n)$. For example, find a and b such that

$$\det(\mathbf{L}_n) = a \det(\mathbf{L}_{n-1}) + b \det(\mathbf{L}_{n-2}),$$

where a and b may depend on n.

(c) [2pt] Find $det(\mathbf{L}_n)$ when n = 10.

3. Let

$$m(x) = x^4 + 2x^3 + 5x^2 + 4x + 4.$$
 $\pi^2 + \pi + 2$

(a) [1pt] Find the derivative m'(x) of m(x).

$$m(x) = 4x^3 + 6x^2 + 10x + 4$$

(b) [2pt] Find the Sylvester matrix $S_{m,m'}$ of m(x) and m'(x).

$$S_{m,m'} = \begin{pmatrix} 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 4 & 0 & 10 & 4 & 0 & 0 \\ 5 & 4 & 4 & 6 & 10 & 4 & 0 \\ 2 & 5 & 4 & 4 & 6 & 10 & 4 \\ 1 & 2 & 5 & 0 & 4 & 6 & 10 \\ 0 & 1 & 2 & 0 & 0 & 4 & 6 \\ 6 & 0 & 1 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

(c) [1pt] Recall that the resultant $\operatorname{Res}(m, m') = \det(S_{m,m'})$ is the determinant of the Sylvester matrix. Describe how to tell if m(x) and m'(x) have a common root in \mathbb{C} or not by the value of $\operatorname{Res}(m, m')$.

(d) [1pt] Describe how to tell if m(x) has a multiple root in \mathbb{C} or not by the value of $\operatorname{Res}(m, m')$.

4. [5pt] Diagonalize

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}.$$

or show that it is not diagonalizable. (Note: The eigenvalues are integers.)

5. [2pt] Is the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

diagonalizable or not diagonalizable? Justify your answer.

6. [3pt] Is the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

diagonalizable or not diagonalizable? Justify your answer.

A is not diagonalizable

Since for
$$A=1$$
,

geo mult = 4

Char poly of A is $p(x) = (x-1)^4$
 $\Rightarrow alg mult = 4$.

 $A-I=\begin{pmatrix} 0 & 2 & 3 & 4 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{pmatrix} \Rightarrow geo mult = dim E, = 1.$

7. [1pt] What is the definition of "matrix A is similar to matrix B"?

8. [1pt] Suppose A is invertible and $det(\mathbf{A}) \neq 0$ is known. How to obtain $det(\mathbf{A}^{-1})$ from $det(\mathbf{A})$?

9. [4pt] Show that similar matrices have the same characteristic polynomial.

10. [1pt] Describe the Cayley–Hamilton theorem.

11. [2pt] Show that the Cayley–Hamilton theorem is true for

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

12. [2pt] Suppose the Cayley–Hamilton theorem is true for diagonal matrices. Show that the Cayley–Hamilton theorem is true for any diagonalizable matrices.

13. [extra 5pt] Find the characteristic polynomial p(x) for the matrix $\mathbf{J}_n - \mathbf{I}_n$. Here \mathbf{J}_n is the $n \times n$ all-ones matrix and \mathbf{I}_n is the $n \times n$ identity matrix.

See ver. A.

14. Find the minimal polynomial of the matrix

(You do not have to justify your answer.)

	\	
Page	Points	Score
. 1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	2	
Total	35 (+7)	

(