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1. [5pt] Let Max2 be the space of all 2 X 2 matrices. Consider the matrix
A = “12 .._2} and define the homomorphism f : Maxy — Maxa by
F(M) = AM for all M € Myyo. Find a basis of the null space of f-ane-
-a-basts-of-therange-ofF.
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9. Let L,, be the n X n matrix whose i, j-entry is =2 if ¢ = 5, 1 if [i —j| = 1,
and 0 otherwise. For example, '

2 1 0 0
-2 1 0
L=| 2 =1 —2 1|, andLi=| 2
1 -2 0 1 o 0 1 -2 1
0 0 1 -2

(a) [1pt] Compute det(L,) for n = 2,3.

gee \/Cr. /4 .

(b) [2pt] Find a recurrence relation for det(Ly,). For example, find a and

b such that
det(Ly,) = adet(Ly—1) + bdet(L,-2),

where a and b may depend on n.

cee ver A

(c) [2pt] Find det(Ly) when n = 10.
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3. Let qz-(-'X‘f‘Z
m(a:):x4+2w3+5a:2+4a;—|~4. £ oeX 2

(a) [Ipt] Find the derivative m'(z) of m(z).
M/(ﬂ/) = 47(3-# éxl—{—/o?(—k 4

(b) [2pt] Find the Sylvester matrix Smm’ of m(x) and m'(z).
o’ej M +4%j wm s 443 =7
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(c¢) [1pt] Recall that the resultant Res(m, m’) = det(Smn) is the deter-
() and

minant of the Sylvester matrix. Describe how to tell if m
m/(z) have a common root in C or not by the value of Res(m,m’).

See  Ver A

(d) [1pt] Describe how to tell if m(z) has a multiple root in C or not by

the value of Res(m,m’).

See  ver- A .
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4. [5pt] Diagonalize

0101
1010
A=lo101
1010
or show that it is not diagonalizable. (Note: The eigenvalues are inte-

gers.)
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5. [2pt] Is the matrix

A =

oo O
o O NN
O W W W
RSN SEER NN

diagonalizable or not diagonalizable? Justify your answer.
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6. [3pt] Is the matrix

A=

O O
O O =N
O = DN W
— N W s

diagonalizable or not diagonalizable? Justify your answer.
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7. [Ipt] What is the definition of “matrix A is similar to matrix B”?

S‘Ce U@V,A

8. [1pt] Suppose A is invertible and det(A) # 0 is known. How to obtain
det(A™1) from det(A)?

(ee ver. A
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9. [4pt] Show that similar matrices have the same characteristic polynomial.

See \/el'. A i
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10. [1pt] Describe the Cayley—Hamilton theorém.

gee \fek, A .

11. [2pt] Show that the Cayley—Hamilton theorem is true for

1000
0200
A——OOBO
0004
See Ver. A

12. [2pt] Suppose the Cayley—Hamilton theorem is true for diagonal matrices.
Show that the Cayley—Hamilton theorem is true for any diagonalizable

matrices.

see er. A‘
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13. [extra 5pt] Find the characteristic polynomial p(z) for the matrix J,, — L.
Here J,, is the n x n all-ones matrix and I,, is the n X n identity matrix.

gc-a \/U,A .
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14. Find the minimal polynomial of the matrix
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(You do not have to justify your answer.)

Sel veyr . A .

[END]
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