國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (二)

MATH 104 / GEAI 1209: Linear Algebra II

第一次期中考

March 25, 2019

Midterm 1

姓名 Name: Solution

學號 Student ID # : ______

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

7 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 30 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- 可用中文或英文作答

1. [2pt] Let X and Y be two vector spaces. Let $f: X \to Y$ be a function. Write down the definition of f being a homomorphism.

$$f(\vec{v_1} + \vec{v_2}) = f(\vec{v_1}) + f(\vec{v_2}) \text{ for all } \vec{v_1}, \vec{v_2} \in X.$$

$$f(r\vec{v_4}) = r. f(\vec{v}) \text{ for all } r \in \mathbb{R}, \vec{v} \in X.$$

2. Let \mathcal{P}_2 be the space of all polynomials with degree at most 2. Let

$$\mathcal{B} = \{1, x - 2, (x - 2)^2\}$$

be a basis of \mathcal{P}_2 .

(a) [2pt] Find the representation $\operatorname{Rep}_{\mathcal{B}}(x^2)$.

$$1 = 1
\chi_{-2} = -2 + \chi
\chi_{-2}^2 = 4 - 4\chi + \chi^2$$

$$\Rightarrow \chi^2 = \frac{4}{12} + 4(\chi - 2) + (\chi - 2)^2 + (\chi - 2$$

So
$$Rep(x^2) = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

(b) [1pt] Suppose \mathbf{v} is a vector in \mathcal{P}_2 with $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$. Find \mathbf{v} . (You do not have to expand the your answer.)

$$\vec{V} = 3.4 + 5.(x-2) + 7.(x-2)^2$$

3. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Let $\mathbf{E}_{i,j}$ be the 2×2 matrix whose i, j-entry is 1 and other entries are zeros. Then

$$\mathcal{B} = \{\mathbf{E}_{1,1}, \mathbf{E}_{1,2}, \mathbf{E}_{2,1}, \mathbf{E}_{2,2}\}$$

is a basis of $\mathcal{M}_{2\times 2}$. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and define the homomorphism $f: \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ by $f(\mathbf{M}) = \mathbf{A}\mathbf{M}$ for all $\mathbf{M} \in \mathcal{M}_{2\times 2}$. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

$$f(E_{1,1}) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \xrightarrow{\text{Rep}_{B}} \Rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}_{B}$$

$$f(F_{1,2}) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \xrightarrow{\text{Rep}_{B}} \Rightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}_{B}$$

$$f(E_{2,1}) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \xrightarrow{\text{Rep}_{B}} \Rightarrow \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}_{B}$$

$$f(E_{2,2}) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix} \xrightarrow{\text{Rep}_{B}} \Rightarrow \begin{pmatrix} 0 \\ 2 \\ 0 \\ 4 \end{pmatrix}_{B}$$

$$\Rightarrow \text{Rep}_{B}(f) = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$

4. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{u}_1 = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 7 \\ 3 \end{bmatrix}.$$

(a) [2pt] Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be homomorphism such that

$$f(\mathbf{v}_1) = f(\mathbf{v}_2) = f(\mathbf{v}_3) = \mathbf{u}_1.$$

Find
$$f(\begin{bmatrix} 1\\0\\0 \end{bmatrix})$$
.
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 1 \cdot \overrightarrow{V_1} - 2 \cdot \overrightarrow{V_2} - 1 \cdot \overrightarrow{V_3}$$

$$\Rightarrow f(\begin{bmatrix} 0\\0\\0 \end{pmatrix}) = f(1 \cdot \overrightarrow{V_1} - 2 \cdot \overrightarrow{V_2} - 1 \cdot \overrightarrow{V_3}) = 1 \cdot \overrightarrow{U_1} - 2 \cdot \overrightarrow{U_1} - 1 \cdot \overrightarrow{U_1} = -2 \cdot \overrightarrow{U_1}$$

$$= \begin{pmatrix} -6\\-14 \end{pmatrix}$$

(b) [3pt] Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis of \mathbb{R}^3 and let $\mathcal{D} = \{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of \mathbb{R}^2 . Suppose $g : \mathbb{R}^3 \to \mathbb{R}^2$ is a homomorphism with

$$\operatorname{Rep}_{\mathcal{B},\mathcal{D}}(g) = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 9 & 0 \end{bmatrix}. \text{ Find } g(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}).$$

$$\operatorname{Rep}_{\mathcal{B}}(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}) = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}_{\mathcal{B}} \text{ by } (a).$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 9 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} 2 \\ -17 \end{pmatrix}_{\mathcal{D}}$$

$$S_{0} g \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \overrightarrow{u_{1}} - 17 \cdot \overrightarrow{u_{2}} = 2 \cdot \begin{pmatrix} 3 \\ 7 \end{pmatrix} - 17 \cdot \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 6 \\ 14 \end{pmatrix} - \begin{pmatrix} 119 \\ 51 \end{pmatrix} = \begin{pmatrix} -113 \\ -37 \end{pmatrix}$$

5. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \text{ and define the homomorphism } f : \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2} \text{ by } f(\mathbf{M}) = \mathbf{A}\mathbf{M} \text{ for all } \mathbf{M} \in \mathcal{M}_{2\times 2}. \text{ Find the null space and the range of } f. \text{ [If you } \mathbf{A}\mathbf{M} \text{ for all } \mathbf{M} \in \mathcal{M}_{2\times 2}.$ use your answer from Problem 3, double check your answer to make sure it is correct.

Let
$$B = \{E_{1,1}, E_{1,2}, E_{2,1}, E_{3,2}\}$$
 be a basis of M_{2x2} .

Then
$$Rep_{B,B}(f) = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$
 by Problem 3.

Do row operations

Golspace (Rep_{B,B}(f)) = span
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix} \right\}$$

Colspace (Rep_{B,B}(f)) = span
$$\left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix} \right\}$$
.

 $\Rightarrow \text{ range } (f) = \text{span } \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$.

 $\Rightarrow \text{ basis}$

In ullspace (Rep. B.B (f)) = span
$$\left\{ \begin{pmatrix} 3 - 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} \right\}$$

=> null space
$$(f) = span \left\{ \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \right\}$$
basis

- 6. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of \mathbb{R}^2 and let \mathcal{S}_2 be the standard basis of \mathbb{R}^2 .
 - (a) [2pt] Find $\operatorname{Rep}_{\mathcal{S}_2,\mathcal{B}}(\operatorname{id})$, the change of basis matrix from \mathcal{S}_2 to \mathcal{B} .

(b) [3pt] Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a homomorphism with $\operatorname{Rep}_{S_2,S_2} = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Compute $\operatorname{Rep}_{\mathcal{B},S_2}(id) = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$ Rep_{B,B} $(f) = \operatorname{Rep}_{S_2,B}(id) \cdot \operatorname{Rep}_{S_2,S_2}(f) \cdot \operatorname{Rep}_{\mathcal{B},S_2}(id)$ $= \begin{pmatrix} 1/10 & 3/10 \\ 3/10 & -1/10 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$ $= \begin{pmatrix} 1/10 & 0 \\ 0 & 0 \end{pmatrix}$

7. [5pt] Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 5 \end{bmatrix}$. Find matrices \mathbf{P} and \mathbf{Q} such that

$$\mathbf{PAQ} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

$$A \xrightarrow{-2r_1 + r_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\frac{-2C_1+C_2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \xrightarrow{C_2+C_3} \begin{pmatrix} 1 & b & b \\ 0 & 1 & 0 \end{pmatrix}$$

$$BP = \begin{pmatrix} -2r_1 + r_2 \\ -2r_2 \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 - 2 - 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 6 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 91 \end{pmatrix}$$

$$-2C_1 + C_2 \qquad C_2 + C_3$$

$$-3C_1 + C_3$$

8. [extra 2pt] Define a sequence by $a_0=6,\,a_1=13,\,\mathrm{and}$

$$a_n^{3} - 5a_{n-1} + 6a_{n-2} = 0$$

for all $n \geq 2$. Find a formula for a_n .

[Hints: First make an observation that

$$\begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix} = \begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix}.$$

Then you may use the fact

$$\begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}^{-1}$$

to find the answer.]

See version A.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	2	
Total	30 (+2)	