國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

離散數學(一)

MATH 203: Discrete Mathematics I

第一次期中考

October 13, 2020

Midterm 1

學號 Student ID # : ______

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Recall that $H_k^n = \binom{n+k-1}{k}$ counts the number of integer solution of $x_1 + \cdots + x_n = k, \quad x_i \ge 0$

for all i = 1, ..., n. Use double counting to prove that

$$H_k^{n+1} = H_k^n + H_{k-1}^n + \dots + H_0^n.$$

Consider the equation

Let Sbe the set of integer solutions of the equation above.

Define S as the set of integer solutions of the equation above with $\chi \propto_{n+1} = 1$.

of
$$x_i + \dots + x_n + j = k$$
, $x_i \ge 0$

$$x_1 + \cdots + x_n = k - \hat{j}$$
, $x_i \ge 0$.

2. [5pt] Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3 for all integer $n \ge 1$.

Let $S_n: n^3+2n$ is divisible by 3 be an open statement.

Claim: Sn is true for all n >1.

Base step: Wh

When n=1, $n^3+2n=1^3+2=3$ is divisible by 3. So S₁ is True.

Inductive Step:

Suppose Sk is True. [Inductive hypothesis].

Then $(k+1)^3 + 3(k+1) = (k^3 + 2k) + 3k^2 + 3k + 1 + 2$

$$=(k^3+2k)+3(k^2+3k+1)$$

By the Inductive hypothesis,

 $3 \mid k^3 + 2k$

Therefore, $3 \left| (k+1)^3 + 2(k+1) \right|$ and 5k+1 is True.

By mathematical induction, Sn is True for all n > 1.

3. [5pt] Prove that any set $S \subseteq \{1, ..., 140\}$ with |S| = 71 contains two numbers a and b such that a is divisible by b.

Define
$$B_i = \{i \cdot 2^p : p = 0, 1, \dots, i \cdot 2^p \in S\}$$
.

e.g. $B_1 = \{1, 2, 4, 8, \dots, 128\}$.

Then $G_1 = B_1 \cup B_2 \cup \dots \cup B_{339} = \{1, \dots, 140\}$.

Consider 71 "Pigeons" and 70 "boxes" B_1, B_3, \dots, B_{139} .

By Pigeon Hole Principal,

at least one of B_i ($i = 1, 3, \dots, 139$)

contains two elements in S_i .

Say $a_i b \in B_i$.

We may assume $a = i \cdot 2^p$, $b = i \cdot 2^q$ with $p < q$.

 $p > q$.

 $p > q$.

4. [5pt] Let m=2020 and n=109. m=2021 and n=110. Find integers a and b such that am+bn=1.

202	0 /09		
)	0	20 20	
0	/	109	2020:109 = 18 58
/	-18	58	58:18=34
-1	19	451	109-58 =1 51
2	-37	7	58- 51=17
-15	278	2	51=7=72
47	-871	1	7=2=31

B Pouble check:

- 5. [extra 2pt] Consider two possible moves \rightarrow : (1,0) and \uparrow : (0,1). Count the number of ways to go from (0,0) to (6,6) such that
 - \bullet each step is either \to or $\uparrow,$ and
 - it touches the line L: y = x + 3.

The number of desired walks

= number of walks from A to B

$$= \begin{pmatrix} 3+9 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 3 \end{pmatrix} = 220$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	-5	
K5.	2	
Total	25 (+2)	

20.