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- Any work necessary to arrive at an answer must be shown on the ex-
amination paper. Marks will not be given for final answers that are not
supported by appropriate work.

- Clearly indicate your final answer to each question either by underlining
it or circling it. If multiple answers are shown then no marks will be
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1. [Ipt] Give an example of a 2 x 2 matrix A = [a;;| such that A is an
orthogonal matrix with ais # 0.
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2. [Ipt] Give an example of a 2 x 2 matrix A = [a;;] such that A is diago-
nalizable and a9 # 0.

3

3. [Ipt] Give an example of a 2 x 2 matrix A = [aij] such that A is not
diagonalizable and as # 0.

4. [1pt] Find a 2 x 2 matrix A = [a;;] such that the eigenvalues of A are
{1, 5} and 19 = 491 = 2.
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5. [Ipt] Give an example of a 5 x 5 matrix A whose only eigenvalue is 3
with algebraic multiplicity 5 and geometric multiplicity 2.
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6. Let E;; be the 2 x 3 matrix whose entries are all zeros except that the

i, j-entry is one. Then

B = {Fy1, Fi2, Ers, Eo1, Ea, Eos}

is a basis of Mayys, the space of all 2 x 3 real matrices. Suppose f :
Mayg — Mays is a homomorphism such that RepB,B( f) equals

01 00
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0 00O
A= 000O
0 00O
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(a) [Ipt] Let M = . Find f(M).
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(¢) [2pt] Find the nullspace of f.
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A=10 5 6 |.
0 0 7

Find an invertible matrix @) and a diagonal matrix D such that AQ =

QD.

7. [5pt] Let

Char poly = (3% ) ( §-%) (7-x)

= elgenvalues & =3 < 7
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8. [5pt] Let

0 -1 0 0 0 07
1 0 -1 0 0 O
O 1 0 -1 0 O

A= o 0o 1 0 -1 0
O 0 0 1 0 -1
0 0 O 1 0

and

p(z) = det(A — zl) = aoz® + a1z + agx* + agx® + aqr? + asx + ag

its characteristic polynomial. Find ag, a1, a9, as, and ag.
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9. [5pt] Let J, be the n x n all-ones matrix. Let I,, be the n x n identity

matrix. Find det(J,, + I,) as a formula of n. Make sure to justify every
step of your argument.
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10. [5pt] Let U be an n x n real upper-triangular matrix. Show that if
UU" =U'U, then U is a diagonal matrix.

let (J= Cuij]T
Coupare +he. 4,1-erty A UU < U0

- jé Y - (/(,,l = U=l = ... U, =0
@qure the 2,2-0#:7 ,)C OV =T
’QJ‘:ZZ“Z; = u;: = Ug= Uy = . =U=0
Saﬁmse L(Q\ o for all [<J‘ and (< k
Then  compare he Kk -entry A OUTsUU
"jz “kJ Sl = Uk = o = dyy =0
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11. [extra 5pt] Let
i [-3 10} |

1 0
Find A%, [Hint: Write A as @=5€.]
ey
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12. [extra 2pt] Let
p(z) = 2° +2° — 2.

Find a 3 x 3 matrix A such that p(A) = O and the three eigenvalues of
A are all distinct.

))m = o (A+2) (X-\)
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O -

\N

[END)]



Page | Points | Score

~N| O O x| W0

Total | 30 (+7)




