國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (二)

MATH 104 / GEAI 1209: Linear Algebra II

期末考

June 8, 2020

Final Exam

姓名 Name : _ Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 30 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is an orthogonal matrix with $a_{12} \neq 0$.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is diagonalizable and $a_{12} \neq 0$.

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

3. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is not diagonalizable and $a_{12} \neq 0$.

4. [1pt] Find a 2×2 matrix $A = [a_{ij}]$ such that the eigenvalues of A are $\{1,5\}$ and $a_{12} = a_{21} = 2$.

$$\begin{pmatrix} q & 2 \\ 2 & b \end{pmatrix} \qquad \begin{array}{c} a+b=1+5=6 \\ ab-4=1\cdot 5=5 \\ \Rightarrow ab=9 \end{array} \Rightarrow \begin{array}{c} a=b=3 \\ 2 & 3 \end{array}$$

5. [1pt] Give an example of a 5×5 matrix A whose only eigenvalue is 3 with algebraic multiplicity 5 and geometric multiplicity 2.

6. Let E_{ij} be the 2×3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$\mathcal{B} = \{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\}$$

is a basis of $\mathcal{M}_{2\times 3}$, the space of all 2×3 real matrices. Suppose f: $\mathcal{M}_{2\times 3} \to \mathcal{M}_{2\times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$ equals

(a) [1pt] Let
$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. Find $f(M)$.
$$\operatorname{Rep}_{\mathcal{B}}(M) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \operatorname{Rep}_{\mathcal{B}}(M) = \begin{pmatrix} 2 & 1 \\ 0 & 0 \\ 6 & 5 \end{pmatrix} = \operatorname{Rep}_{\mathcal{B}}(f(M))$$

$$\Rightarrow f(M) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 6 & 5 \end{pmatrix}$$

=> range(f) = span
$$\{E_{12}, E_{11}, E_{23}, E_{22}\}$$

(or $\{(a \ b \ o) : a,b,C,d \in \mathbb{R}^3\}$)

the Find the nullspace of f .

(c) [2pt] Find the nullspace of f.

nullspace (A) = Span
$$\begin{cases} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \text{ null space } (f) = \text{span } \left\{ E_{13}, E_{21} \right\}$$

$$\left\{ \text{ or } \left\{ \left(\begin{array}{c} a^{0} \circ aq \\ b \circ o_{2} \end{array} \right) : a, b \in \mathbb{R} \right\} \right\}$$

$$A = \begin{bmatrix} 3 & \cancel{\cancel{N}} & -24 \\ 3 & \cancel{\cancel{N}} & -\cancel{\cancel{N}} \end{bmatrix}.$$

Find an invertible matrix Q and a diagonal matrix D such that AQ = QD.

Char poly =
$$(3-x)(5-x)(7-x)$$

$$\lambda=3$$
, $A = \begin{cases} 0 & 8 & -24 \\ 2 & 8 & 8 \end{cases} \Rightarrow E_{3} = span \begin{cases} 0 & 1 \\ 0 & 1 \end{cases}$

$$\lambda = 5, A - 5I = \begin{pmatrix} -2 & 8 & -24 \\ -2 & 8 & +3 \\ 0 & 6 \\ 2 \end{pmatrix} \Rightarrow E_{\lambda} = span \begin{cases} 1 \\ 0 \\ 0 \end{cases}$$

$$\lambda = 7, A - 7I = \begin{pmatrix} -4 & 8 & -24 \\ -2 & 6 \end{pmatrix} \Rightarrow E_{\lambda} = Span \begin{cases} 0 \\ 3 \\ 1 \end{cases}$$

$$\Rightarrow Q = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}$$

8. [5pt] Let

$$A = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

and

$$p(x) = \det(A - xI) = a_0x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6$$

its characteristic polynomial. Find a_0 , a_1 , a_2 , a_5 , and a_6 .

$$\frac{Q_0 = (-1)^6 = 1}{Q_1 = (-1)^3 \cdot \text{tr}(A) = 0}$$

$$\frac{Q_0 = (-1)^3 \cdot \text{tr}(A) = 0}{Q_0 = (-1)^3 \cdot \text{sun of } 2x_2 \text{ principal minors} = 5 \cdot \det \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \text{many } \det \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= 5$$

$$\begin{array}{lll}
G_{3} = & (-1) \cdot \text{sum of 5x5 principal minors} \\
= & (-1) \cdot \left[\left[\begin{array}{c} 0 + 1 \\ 1 & 0 - 1 \\ 1 & 0 \end{array} \right] + \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] + \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] + \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] \\
+ \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] + \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] + \left[\begin{array}{c} 0 - 1 \\ 1 & 0 \end{array} \right] = 0.$$

$$9_6 = \det(A) = 1$$
.

9. [5pt] Let J_n be the $n \times n$ all-ones matrix. Let I_n be the $n \times n$ identity matrix. Find $\det(J_n + I_n)$ as a formula of n. Make sure to justify every step of your argument.

10. [5pt] Let U be an $n \times n$ real upper-triangular matrix. Show that if $UU^{\top} = U^{\top}U$, then U is a diagonal matrix.

Let
$$U = [u_{ij}]$$
Compare the 1,1-entry of $UU^T = U^TU$.

$$\Rightarrow \sum_{j=1}^{n} u_{1j}^2 = u_{11}^2 \Rightarrow u_{12} = u_{13} = \dots = u_{1n} = 0$$
Compare the 2,2-entry of $UU^T = U^TU$.

$$\Rightarrow \sum_{j=2}^{n} u_{2j}^2 = u_{2j}^2 \Rightarrow u_{23} = u_{34} = \dots = u_{2n} = 0$$
Suppose $u_{ij} = 0$ for all $i < j$ and $i < k$.

Then compare the k,k -entry of $UU^T = U^TU$

$$\Rightarrow \sum_{j=2}^{n} u_{kj}^2 = u_{kk}^2 \Rightarrow u_{kk} = u_{kn} = 0$$

11. [extra 5pt] Let

$$A = \begin{bmatrix} -3 & 10 \\ 1 & 0 \end{bmatrix}.$$

Find A^{100} . [Hint: Write A as $Q^{-1}DQ$.]

Diagonalize A:

$$\lambda = 2$$
, $A - 2I = \begin{pmatrix} -5 & 10 \\ 1 & -2 \end{pmatrix} \longrightarrow null space = span $\left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$\lambda = -5$$
, $A + 5I = \begin{pmatrix} 2 & 10 \\ 1 & 5 \end{pmatrix} \longrightarrow null space = span $\begin{cases} 5 \\ -1 \end{cases}$$

Let
$$Q = \begin{pmatrix} 2 & 5 \\ 1 & -1 \end{pmatrix}$$
, $D = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

Then
$$A = QDQ^{-1}$$

$$= \left(\frac{2}{1}, \frac{5}{1}\right) \left(\frac{2}{100}\right) \left(-1, \frac{5}{100}\right)$$

$$= \left(\frac{2}{1}, \frac{5}{100}\right) \left(\frac{1}{1}, \frac{5}{100}\right) \left(-1, \frac{5}{100}\right)$$

$$= \frac{1}{7} \left(\frac{2 \cdot 2^{100}}{2^{100}} + \frac{5^{100}}{100}\right) \left(-1, \frac{5^{100}}{100}\right)$$

$$= \frac{1}{7} \left(\frac{-2 \cdot 2^{100} + 5^{100}}{100} + \frac{5^{100}}{100}\right)$$

$$= \frac{1}{7} \left(\frac{-2 \cdot 2^{100} + 5^{100}}{100}\right) \left(-\frac{1}{100}\right)$$

$$= \frac{1}{7} \left(\frac{-2 \cdot 2^{100} + 5^{100}}{100}\right) \left(-\frac{1}{100}\right)$$

12. [extra 2pt] Let

$$p(x) = x^3 + x^2 - 2x.$$

Find a 3×3 matrix A such that p(A) = O and the three eigenvalues of A are all distinct.

$$pxx = x(x+2)(x-1)$$

$$pick A = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

,			
	Page	Points	Score
	1	5	
	2	5	
	3	5	
	4	5	
	5	5	
	6	5	
	7	5	
	8	2	
	Total	30 (+7)	