國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (二)

MATH 104 / GEAI 1209: Linear Algebra II

第一次期中考

March 23, 2020

Midterm 1

姓名 Name: solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

6 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 25 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- 可用中文或英文作答

- 1. Let $\mathbf{v} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ and $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$ the standard basis of \mathbb{R}^2 . Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be another basis of \mathbb{R}^2 , where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
 - (a) [1pt] Find $Rep_{\mathcal{E}}(\mathbf{v})$.

$$\begin{pmatrix} 5 \\ 3 \end{pmatrix} = 5\vec{e_1} + 3\vec{e_2} \Rightarrow \text{Rep}(\vec{v}) = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

(b) [1pt] Find $Rep_{\mathcal{B}}(\mathbf{v})$.

$$\binom{5}{3} = 4\vec{v}_1 + 1\cdot\vec{v}_2 \implies \text{Rep}_{\mathcal{B}}(\vec{v}) = \binom{4}{1}$$

- 2. Let $\mathbf{p} = x^2 + 2x + 3$ be a polynomial in \mathcal{P}_2 , the space of all polynomials of degree at most 2.
 - (a) [1pt] Let $\mathcal{B} = \{1, x, x^2\}$ be a basis of \mathcal{P}_2 . Find $\text{Rep}_{\mathcal{B}}(\mathbf{p})$.

$$p = 3 \cdot 1 + 2 \cdot \chi + 1 \cdot \chi^{2}$$

$$\Rightarrow \text{Rep}_{B}(p) = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

(b) [1pt] Let $C = \{1, x + 1, (x + 1)^2\}$ be a basis of \mathcal{P}_2 . Find $\text{Rep}_{\mathcal{C}}(\mathbf{p})$.

$$\chi^{2}_{+2\chi+3} = a \cdot 1 + b(\chi+1) + c(\chi+1)^{2}$$

$$\Rightarrow a = 2, b = 0, c = 1$$

$$\Rightarrow Rep_{C}(p) = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

(c) [1pt] Let $\mathcal{D} = \{x^2, x, 1\}$ be a basis of \mathcal{P}_2 . Find $\text{Rep}_{\mathcal{D}}(\mathbf{p})$.

$$p = 1 \cdot \chi + 2 \cdot \chi + 3 \cdot 1$$

$$\Rightarrow \operatorname{Rep}(p) = \left(\frac{3}{2}\right)^{\frac{1}{2}}$$

3. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis of \mathbb{R}^3 and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ another basis of \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

(a) [2pt] Find a matrix M such that $M \operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \operatorname{Rep}_{\mathcal{E}}(\mathbf{v})$ for any $\mathbf{v} \in \mathbb{R}^3$.

$$M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) [3pt] Find a matrix N such that $N \operatorname{Rep}_{\mathcal{E}}(\mathbf{v}) = \operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$ for any $\mathbf{v} \in \mathbb{R}^3$.

4. Define three polynomials as follows.

$$f_1(x) = \frac{1}{2}(x-2)(x-3)$$

$$f_2(x) = -(x-1)(x-3)$$

$$f_3(x) = \frac{1}{2}(x-1)(x-2)$$

It is known that $\mathcal{B} = \{f_1, f_2, f_3\}$ is a basis of \mathcal{P}_2 , the space of all polynomials of degree at most 2.

(a) [2pt] Let
$$\mathbf{p}(x) = 3x^2 + 5x + 4$$
. Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{p})$.
 f_1, f_2, f_3 are Lagrange pdynomial based on 1,2,3.

$$p(x) = p(1)f_1 + p(2)f_2 + p(3)f_3$$

$$p(1) = 3+5+4 = 12$$

$$p(2) = 12+10+4 = 26$$

$$p(3) = 27+15+4 = 46$$

$$= Rep_B(p) = \begin{pmatrix} 12 \\ 26 \\ 46 \end{pmatrix}$$

(b) [3pt] Let $\mathcal{D} = \{1, x + 1, (x + 1)^2\}$ be another basis of \mathcal{P}_2 . Find a matrix M such that $M \operatorname{Rep}_{\mathcal{D}}(\mathbf{q}) = \operatorname{Rep}_{\mathcal{B}}(\mathbf{q})$ for any $\mathbf{q} \in \mathcal{P}_2$.

$$q(x) = q(1)f_{1}(x) + q(2)f_{2}(x) + q(3)f_{3}(x)$$

$$1 = 1 \cdot f_{1} + 1 \cdot f_{2} + 1 \cdot f_{3}$$

$$x + 1 = 2 \cdot f_{1} + 3 \cdot f_{2} + 4 \cdot f_{3}$$

$$(x + 1)^{2} = 2^{2} \cdot f_{1} + 3^{2} \cdot f_{2} + 4^{2} \cdot f_{3}$$

$$\Rightarrow Rep \Rightarrow M = Rep_{D,B}(id) = \begin{pmatrix} 1 & 2 & 2^{2} \\ 1 & 3 & 3^{2} \\ 1 & 4 & 4^{2} \end{pmatrix}$$

5. [5pt] Define a map $f: \mathbb{R}^4 \to \mathbb{R}^3$ by $f(\mathbf{v}) = A\mathbf{v}$, where

$$A = \begin{bmatrix} 3 & 0 & 0 & 3 \\ 0 & 2 & 2 & 0 \\ 3 & 0 & 0 & 3 \end{bmatrix}.$$

Let $\mathcal{B}=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4\}$ and $\mathcal{D}=\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ such that

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
 and.

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Find $Rep_{\mathcal{B},\mathcal{D}}(f)$.

$$f(\vec{v}_i) = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix} = 6\vec{u}_i + 0\vec{u}_s + 0.\vec{u}_s$$

$$f(\vec{v_2}) = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = 0.\vec{u_1} + 4\vec{u_2} + 0.\vec{u_3}$$

$$f(\vec{v_3}) = f(\vec{v_4}) = \vec{0}$$

$$\Rightarrow Rep_{B,P}(f) = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

6. Let E_{ij} be the 2 × 3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$\mathcal{B} = \{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\}$$

is a basis of $\mathcal{M}_{2\times 3}$, the space of all 2×3 real matrices. Suppose $f: \mathcal{M}_{2\times 3} \to \mathcal{M}_{2\times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$ equals

(a) [1pt] Let
$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. Find $f(M)$.

$$\operatorname{Rep}_{\mathcal{B}}(M) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

$$A \cdot \operatorname{Rep}_{\mathcal{B}}(M) = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix}.$$

$$\Rightarrow f(M) = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix}.$$

(c) [2pt] Find the nullspace of
$$f$$
.

 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$
 $|A| = \begin{cases} 0 & 0 \\ 0 & a \end{cases}$

7. [extra 2pt] Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a map defined by $f(\mathbf{v}) = A\mathbf{v}$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}.$$

Find two bases $\mathcal B$ and $\mathcal D$ of $\mathbb R^3$ such that $\operatorname{Rep}_{\mathcal B,\mathcal D}(f)$ is the identity matrix.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	25 (+2)	