國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103 / GEAI 1215: Linear Algebra I

期末考

January 10, 2022

Final Exam

姓名 Name: Solution

Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

6 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [1pt] Find subsets $A, B \subseteq \{0, 2, 4, 6, 8\}$ and a function $f: A \to B$ such that f is injective but not surjective.

Let
$$A = \{0, 2\}$$
 $f:A \longrightarrow B$
 $B = \{0, 2, 4\}$. $f:x = x$.

2. [1pt] Find subsets $A, B \subseteq \{0, 2, 4, 6, 8\}$ and a function $f: A \to B$ such that f is surjective but not injective.

Let
$$A = \{0, 2, 4\}$$
 $f : A \rightarrow B$
 $B = \{0, 2\}$ $2 \mapsto 2$
 $4 \mapsto 2$

3. [1pt] Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ be the set of all nonnegative integers and \mathbb{Z} the set of all integers. Find a bijection from \mathbb{N}_0 to \mathbb{Z} .

Let
$$f: N_0 \longrightarrow \mathbb{Z}$$
 such that $f(0)=0$

$$f(n) = \frac{n+1}{2} \text{ if } n \text{ odd}$$

$$f(n) = -\frac{n}{2} \text{ if } n \text{ even}.$$

4. [1pt] Find a surjective linear function $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that f(1,1,1) = (0,0).

(0,0). Let
$$A = \begin{bmatrix} +1 & 0 \\ -1 & 0 \end{bmatrix}$$
 and let $f = f_A$.

5. [1pt] Find an injective linear function $f: \mathbb{R}^2 \to \mathbb{R}^3$ such that f(1,0) = (1,1,1).

6. Let

$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

and $\beta = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a basis of \mathbb{R}^3 . Suppose $f : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear function such that

$$f(\mathbf{u}_1) = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \ f(\mathbf{u}_2) = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \ \text{and} \ f(\mathbf{u}_3) = \begin{bmatrix} 3 \\ 6 \end{bmatrix}.$$

(a) [1pt] Find
$$f \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$$
.

$$f(0) = f(u_1 - u_2) = f(u_1) - f(u_2) = (4) - (5) = [-1]$$

(b) [1pt] Find
$$f\begin{pmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} \end{pmatrix}$$
.
$$f\begin{pmatrix} 01\\0\\0 \end{bmatrix} = f(-u_1 + u_2 + u_3) = f(-u_1) + f(u_2) + f(u_3) = -\begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} 2\\5 \end{pmatrix} + \begin{pmatrix} 3\\6 \end{pmatrix}$$

$$= \begin{pmatrix} 4\\7 \end{pmatrix}$$

(c) [2pt] Find a matrix A such that $f(\mathbf{u}) = A\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^3$.

$$f({\stackrel{\circ}{\circ}}) = {\stackrel{\circ}{\circ}}$$

$$f({\stackrel{\circ}{\circ}}) = {\stackrel{\circ}{\circ}}$$

$$f({\stackrel{\circ}{\circ}}) = {\stackrel{\circ}{\circ}}$$

$$f({\stackrel{\circ}{\circ}}) = -f({\stackrel{\circ}{\circ}}) = -{\stackrel{\circ}{\circ}}$$

$$f({\stackrel{\circ}{\circ}}) = -f({\stackrel{\circ}{\circ}}) = -{\stackrel{\circ}{\circ}}$$

7. Let

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Let $\alpha = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a basis of \mathbb{R}^3 and $\beta = \{\mathbf{v}_1, \mathbf{v}_2\}$ a basis of \mathbb{R}^2 . Suppose $f : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear function such that

$$f(\mathbf{u}_1) = \mathbf{v}_1,$$

 $f(\mathbf{u}_2) = \mathbf{v}_2,$
 $f(\mathbf{u}_3) = \mathbf{v}_1.$

Recall that \mathcal{E}_n is the standard basis of \mathbb{R}^n .

(a) [1pt] Find the matrix representation $[f]_{\alpha}^{\beta}$.

$$[f]_{\alpha}^{\beta} = \left[[f(u_{1})]_{\beta} [f(u_{2})]_{\beta} \right] = \left[\begin{array}{c} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

(b) [2pt] Find the change of basis matrices [id] $_{\alpha}^{\mathcal{E}_3}$ and [id] $_{\mathcal{E}_3}^{\alpha}$.

$$\operatorname{Eid}_{\alpha}^{\mathcal{E}_{3}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \operatorname{Eid}_{\mathcal{E}_{3}}^{\mathcal{E}_{3}} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c) [2pt] Find a matrix A such that $f(\mathbf{u}) = A\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^3$.

$$A = [f] = [id][f]_{x}[id]_{x}^{x}$$

$$= [10][000][000]$$

$$= [10][000][000]$$

$$= [10][000][000]$$

$$= [10][000][000]$$

8. [5pt] 數學作文:請寫一篇短文來向沒修過線性代數的朋友介紹什麼是線性函數 (linear function)。

請寫下線性函數的定義,並說明它和矩陣之間的關係。請以自己的方式、盡量白話的敘述、或是比喻來說明這個爲什麼要這樣定義?還有爲什麼要考慮這樣的概念?請給一些能幫助他人理解的例子(正面的、反面的),並提出一些這個概念的相關性質;有必要的話可以加上一些圖來輔助說明。格式沒有限制,篇輻大約半面到一面。

(If Chinese is not your native language, you may use English or the language that you prefer.)

9. [extra 5pt] Let $\beta = \{\mathbf{u}_0, \dots, \mathbf{u}_k\}$ be a set of nonzero vectors in \mathbb{R}^n . Suppose $\lambda_0, \dots, \lambda_k$ are distinct real numbers and A is an $n \times n$ matrix such that $A\mathbf{u}_i = \lambda_i \mathbf{u}_i$ for $i = 0, \dots, k$. Show that β is linearly independent.

Suppose
$$G_{0}U_{0}+G_{1}U_{1}+...+G_{k}U_{k}=0$$
 --- O

Then by multiplying A on both sides,

we have $G_{0}N_{0}U_{0}+G_{1}N_{1}U_{1}+...+G_{k}N_{k}U_{k}=0$ --- O

Let f_0, f_1, \ldots, f_k be the Lagrange polynomials of A_0, \ldots, A_k .

That is, $f_0(A_0)=1$ and $f_0(A_1)=f_0(A_2)=...=f_0(A_k)=0$. Let $f_0=a_0+q_1X+a_2X^2+...+a_kX^k$

Then a. O+a, O+ ... +ak · B leads to.

Since Vo 70 => Co=0.

Similarly, we can get $G = \dots = G_k = 0$ by doing the same arguments with f_1, \dots, f_k .

So B is linearly indep.

10. [extra 2pt] Let $p = 1+2x+x^2$ and $q = -4+2x+3x^2-2x^3$ be polynomials. It is known that

$$\begin{bmatrix} 1 & 0 & 0 & -4 & 0 \\ 2 & 1 & 0 & 2 & -4 \\ 1 & 2 & 1 & 3 & 2 \\ 0 & 1 & 2 & -2 & 3 \\ 0 & 0 & 1 & 0 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} 37 & -40 & 44 & -48 & 52 \\ -52 & 57 & -62 & 68 & -74 \\ 20 & -22 & 24 & -26 & 29 \\ 9 & -10 & 11 & -12 & 13 \\ 10 & -11 & 12 & -13 & 14 \end{bmatrix}.$$

Find polynomials $a \in \mathcal{P}_2$ and $b \in \mathcal{P}_1$ such that ap + bq = 1, where \mathcal{P}_d is the set of all polynomials of degree at most d.

Let
$$a=37-52x+20x^2$$

$$b=9+10x$$
Then $ap+bq=1$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	8
5	5	
6	. 2	
Total	20 (+7)	