國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

期末考

December 19, 2022

Final Exam

姓名 Name: <u>Solution</u>

學號 Student ID # : ______

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

6 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using a calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. [1pt] Let $X = \{p, q, r\}$. Pick a set $Y \subseteq \{1, 2, 3, 4, 5\}$ and define a function $f: X \to Y$ such that f is **injective but not surjective**.

2. [1pt] Let $X = \{p, q, r\}$. Pick a set $Y \subseteq \{1, 2, 3, 4, 5\}$ and define a function $f: X \to Y$ such that f is surjective but not injective.

3. [1pt] Let $X = \{p, q, r\}$. Pick a set $Y \subseteq \{1, 2, 3, 4, 5\}$ and define a function $f: X \to Y$ such that f is **bijective**.

$$\frac{Y = \{1,2,3\}}{f}$$

$$f : P \mapsto I$$

$$f \mapsto \exists I$$

4. [1pt] Define a function $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that f is **linear**.

Define
$$f(x,y,z) = (0,0)$$
, for all $(x,y,z) \in \mathbb{R}^3$

5. [1pt] Define a function $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that f is **not linear**.

Define
$$f(x,y,z) = (1,1)$$
 for all $(x,y,z) \in \mathbb{R}^3$.

6. Let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Let

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{u}_{2} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{u}_{3} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \ \text{and}$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear function such that $f(\mathbf{u}_i) = \mathbf{v}_i$ for i = 1, 2, 3.

(a) [1pt] Find $f(\mathbf{u}_1 + \mathbf{u}_2)$.

$$f(\vec{u}_1 + \vec{u}_2) = f(\vec{u}_1) + f(u_2) = \vec{v}_1 + \vec{v}_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

(b) [2pt] Find $f(\mathbf{e}_2)$ and $f(\mathbf{e}_3)$.

$$\vec{e}_{3} = \vec{u}_{2} + 2\vec{u}_{1}$$

 $S_{0} f(\vec{e}_{3}) = f(\vec{u}_{3}) + 2f(\vec{u}_{1}) = \vec{v}_{2} + 2\vec{v}_{1} = \begin{bmatrix} 3 \\ 17 \end{bmatrix}$
 $\vec{e}_{3} = \vec{u}_{3} + 2\vec{u}_{1} + \vec{u}_{1} = \begin{bmatrix} 3 \\ 17 \end{bmatrix}$
 $S_{0} f(\vec{e}_{3}) = f(\vec{u}_{3}) + 2f(\vec{u}_{1}) + f(\vec{u}_{1}) = \vec{v}_{3} + 2\vec{v}_{2} + \vec{v}_{1} = \begin{bmatrix} 67 \\ 67 \end{bmatrix}$

(c) [1pt] Find the matrix representation [f] such that $[f]\mathbf{u} = f(\mathbf{u})$ for any $\mathbf{u} \in \mathbb{R}^3$.

any
$$\mathbf{u} \in \mathbb{R}^3$$
.

Note: $f(\vec{e}_i) = f(\vec{u}_i) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ So $\mathbf{E} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\mathbf{e} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\mathbf{e} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\mathbf{e} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ (d) [1pt] Find rank (f) and null (f) .

(d) [1pt] Find rank(f) and null(f).

[f]
$$\rightarrow$$
 [$0 \rightarrow 2 \rightarrow 2$]. * of pivots = 2.
rank cf) = * of pivots = 2
null cf) = 3 - rank cf) = 1.

7. Let $\alpha = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis of \mathbb{R}^3 . Let $\beta = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a basis of \mathbb{R}^3 , where

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}, \ \text{and} \ \mathbf{u}_3 = \begin{bmatrix} -1 \\ 3 \\ -6 \end{bmatrix}.$$

(a) [2pt] Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ such that

$$[\mathbf{v}]_{\beta} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Find v and $[\mathbf{w}]_{\beta}$.

Since
$$\text{LVT}_{\beta} = \begin{bmatrix} \frac{7}{2} \\ \frac{7}{3} \end{bmatrix}$$
, $\vec{V} = 1\vec{U}_1 + 2\vec{U}_2 + 3\vec{U}_3 = \begin{bmatrix} \frac{7}{2} \\ \frac{1}{3} \end{bmatrix}$.

Then solve $\vec{G}_1 + \vec{G}_2 + \vec{G}_3 = \vec{U}_3$ by

$$\begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{3}{3} & \frac{7}{2} \\ \frac{7}{3} & \frac{3}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \end{bmatrix} \xrightarrow{\sim_3} \begin{bmatrix} \frac{7}{2} + \frac{7}{3} & \frac{7}{3} & \frac{7}{3} \\ 0 & \frac{7}{2} + \frac{7}{3} & \frac{7}$$

(b) [3pt] Find the change of basis matrices $[id]^{\beta}_{\alpha}$ and $[id]^{\alpha}_{\beta}$.

- 8. Let V be a vector space and $\beta = \{\mathbf{u}_1, \dots, \mathbf{u}_d\}$ a basis of V. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of the *vector representation* as clear as possible.
 - (a) [2pt] Suppose $\mathbf{v} \in V$ is a vector. Define what is the vector representation $[\mathbf{v}]_{\beta}$ with respect to β and use a few sentences to explain the definition.

(b) [1pt] What might happen if β is not a basis?

(c) [2pt] Provide an example of $[\mathbf{v}]_{\beta}$ with $V = \mathbb{R}^2$ and an example of $[\mathbf{v}]_{\beta}$ with $V = \mathcal{P}_1$, the space of all real polynomials of degree at most 1.

9. [extra 5pt] Let $\mathcal{M}_{2,3}$ be the space of all 2×3 real matrices. Let

$$\beta = \{E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}\}$$

be the standard basis of $\mathcal{M}_{2,3}$, where

$$E_{1,1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, E_{1,2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, E_{1,3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$E_{2,1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, E_{2,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, E_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Consider the linear function $f: \mathcal{M}_{2,3} \to \mathcal{M}_{2,3}$ defined by f(X) = AX with

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Find the matrix representation
$$[f]_{\beta}^{\beta}$$
.

$$f(E_{1,2}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

$$f(E_{1,2}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}$$

$$f(E_{1,2}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}$$

$$f(E_{2,1}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{bmatrix}$$

$$f(E_{2,2}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 & 4 \end{bmatrix}$$

$$f(E_{2,3}) = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 & 4 \end{bmatrix}$$

$$f(E_{2,3}) = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 & 4 \end{bmatrix}$$

$$f(E_{2,3}) = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 & 4 \end{bmatrix}$$

10. [extra 2pt] Let \mathcal{P}_3 be the space of all real polynomials of degree at most 3. Let

$$\beta = \{f_1(x), f_2(x), f_3(x), f_4(x)\}\$$

be a basis of \mathcal{P}_3 , where

$$f_1(x) = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)},$$

$$f_2(x) = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)},$$

$$f_3(x) = \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)},$$

$$f_4(x) = \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}.$$

Let $p(x) = 1 - 2x + 3x^2 - 4x^3$. Find the vector representation $[p(x)]_{\beta}$.

Suppose
$$p(x) = d_1 f_1(x_1) + d_2 f_2(x_2) + d_3 f_3(x_3) + d_4 f_4(x_3)$$
.

Then
$$\begin{cases}
d_1 = p(1) = -2 \\
d_2 = p(2) = -23 \\
d_3 = p(3) = -86 \\
d_4 = p(4) = -215
\end{cases}$$
So
$$\begin{cases}
p(x_1) f_2 = \begin{cases}
-2 \\
-23 \\
-86 \\
-215
\end{cases}$$

The second		
Page	Points	Score
1	5	
2	5	
3	5	5 - h
4	5	
5	(+5)	
6	(+2)	9 = 20
Total	20 (+7)	