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- Please answer the problems in English.
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1. [1pt] Let X = {p,q,r}. Pickaset Y C {1,2,3,4,5} and define a function
f X — Y such that f is injective but not surjective.
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2. [1pt] Let X = {p,q,r}. Pickaset Y C {1,2,3,4,5} and define a function
f X = Y such that f is surjective but not injective.
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3. [1pt] Let X = {p, q,r}. Pickaset Y C {1,2,3,4,5} and define a function
f : X — Y such that f is bijective.

Y= 11,237
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4. [1pt] Define a function f: R® — R? such that f is linear.
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5. [1pt] Define a function f : R® — R? such that f is not linear.
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6. Let {e1, e, e3} be the standard basis of R?. Let

1 -2 3
u= |0, uy=1|1], u3z= [—2|, and
0 0 1

o= v o[ .2 3]
1= 3| 2 = 1] 3 — 1_ :
Suppose f : R® — R? is the linear function such that f(u;) = v; for

i=1,2,3.
(a) [1pt] Find f(u1 -} 112).

Lo+ :7[([?)7"7[26()/) =V + % :[j]

(b) [2pt] Find f(es) and f(es3).
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(c) [Ipt] Find the matrix representation [f] such that [f]u
any u € R?. )

|
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) A3
= [ 3 7 ¢ [
(d) [1pt] Find rank( f) and null(f). | y
TJ_N l 5 ,,2 2 ] * G‘F (77«c,vk =2
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7. Let a = {ey, ey, e3} be the standard basis of R®. Let 8 = {uy, uy, u3} be
a basis of R?, where

1 2 —1
u = |—2|,uw=|-3|,andus=1| 3 |.
5 8 —6

(a) [2pt] Let v,w € R3 such that

1 1
[V]g = [2} and w = [2} .
3 3
Find v and [w
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(b) [3pt] Find the cha,nge of basis matrices [id]? and [id]3.
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8. Let V be a vector space and 8 = {uy,...,us} a basis of V. Suppose
you are talking to people who have never learned linear algebra. Fol-
low the guidelines below and try to explain the concept of the wector
representation as clear as possible.

(a) [2pt] Suppose v € V is a vector. Define what is the vector represen-
tation [v]s with respect to f and use a few sentences to explain the
definition.

(b) [1pt] What might happen if § is not a basis?

(c) [2pt] Provide an example of [v]g with V' = R* and an example of [v]s
with V = Py, the space of all real polynomials of degree at most 1.
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9. [extra 5pt] Let Moy 3 be the space of all 2 x 3 real matrices. Let

B={F1,Ei2 E3,FEy1,E29, Fo3}

be the standard basis of My 3, where

[1 0 0] [0 1 0] 0 0 1
El,l— _O O 0_ )E1,2'— _0 O OJ 7E1,3— _O 0 O_‘,
0 0 O] [0 0 0] 0 0 0
By = 10 0  Faz = 0 1 0] » a3 = 0 0 1
Consider the linear function f : My3 — Moy defined by f(X)
with _
1 2
A [3 4}.

Find the matrix representation | f]ﬁ
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10. [extra 2pt] Let Ps be the space of all real polynomials of degree at most

3. Let

B = {fi(z), f2(x), f3(z), fa(z)}

be a basis of P3, where

fi(z) =

(z —2)(z —3)(z — 4)
(1-2)(1-3)(1—-4)’
(x —1)(z — 3)(z —4)
2-1)(2- 3)(2 —4)’
(z —1)(z —2)(z —4)
B3-1)(3-2)(3—-4)’
(x —1)(z — 2)(z — 3)
(4 — 1)(4 —2)(4-3) .

Let p(z) = 1 — 2z + 32% — 423, Find the vector representation [p(z)]s.

%Lb{)fﬁc, P = as 76, (x) + cj;ﬁ(y) +<; écw) 'H/J}E& )
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[END]



Page | Points | Score
1 5
2 5
3 5
4 5
5 (+5)
6 (+2)
Total | 20 (47)




