國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第一次期中考

October 3, 2022

Midterm 1

姓名 Name: _____Solution

學號 Student ID # : ______

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. Let

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 5 \\ -1 \\ -3 \\ 1 \end{bmatrix}.$$

(a) [1pt] Find the length of **u**.

(b) [1pt] Let θ be the angle between the vectors **u** and **v**. Find $\cos \theta$.

$$|V| = \sqrt{33^{2} + (-3)^{2} + (-3)^{2} + 1^{2}} = \sqrt{25 + 1 + 9 + 1} = 6.$$

$$\langle u, v \rangle = 1.5 + 1.(-1) + (-1)(-3) + (-1).1 = 5 - 1 + 3 - 1 = 6$$

$$\cos \theta = \frac{\langle u, v \rangle}{||u|| \cdot ||v||} = \frac{6}{2 \cdot 6} = \frac{1}{2}.$$

(c) [1pt] Find a vector in $span(\{u, v\})$. Provide your reasons.

For example,
$$1\vec{u} + 1\vec{v} = \begin{bmatrix} 6\\0\\-4\\0 \end{bmatrix}$$
 is in span $(\vec{y}\vec{u}, \vec{v}\vec{z})$.

(d) [1pt] Find a vector **NOT** in span($\{\mathbf{u}, \mathbf{v}\}$). Provide your reasons.

For example, [i] is not in span
$$(\vec{3}\vec{u}, \vec{7}\vec{3})$$

Since $\begin{bmatrix} 1 & 5 \\ 1 & -1 \\ -1 & -3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$ has no solution.

(e) [1pt] Find a vector that is orthogonal to both **u** and **v**.

Solve
$$5 \times 4 = 2 - w = 0$$

$$15x - 4 - 3z + w = 0$$
For example,
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
is a solution.

2. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

(a) [2pt] Draw the vector \mathbf{b} and the subspace $\operatorname{Col}(A)$ in \mathbb{R}^2 . Mark at least one vector in $\operatorname{Col}(A)$ in your drawing. Does $A\mathbf{x} = \mathbf{b}$ have a solution

No solution

since b & Col(A).

(b) [1pt] Draw the subspace $\ker(A)$ and its normal vector in \mathbb{R}^3 .

(c) [2pt] Find \mathbf{h}_1 and \mathbf{h}_2 such that $\ker(A) = \operatorname{span}(\{\mathbf{h}_1, \mathbf{h}_2\})$.

3. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 7 \\ 2 & 4 & 7 & 15 \\ -1 & -2 & -2 & -6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -7 \\ -17 \\ 4 \end{bmatrix}.$$

(a) [2pt] Find the reduced echelon form of the augmented matrix [$A \mid \mathbf{b}$].

(b) [3pt] Find \mathbf{p} , \mathbf{h}_1 , and \mathbf{h}_2 such that the set of general solutions of $A\mathbf{x} = \mathbf{b}$ is

$$\{\mathbf{p} + c_1\mathbf{h}_1 + c_2\mathbf{h}_2 : c_1, c_2 \in \mathbb{R}\}.$$

The rref leads to the equation
$$S \times_1 + 2\times_2 + 4\times_4 = 2$$

$$X_3 + X_4 = -3$$
Free vars = x_2 , x_4

$$Set \quad x_2 = x_4 = 0 \quad \text{and} \quad \text{solve } (x)$$
:
$$0 = x_1$$

$$\vec{P} = \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix}$$

Homogeneous equations $\begin{cases} X_1 + 2X_2 & +4X_4 = 0 \\ X_3 + X_4 = 0 & --- (***) \end{cases}$

Set
$$x_{5}=1$$
, $x_{4}=0$ and solve (x_{7}) : $\frac{1}{h_{4}}=\begin{bmatrix} -2\\ 0\\ 0 \end{bmatrix}$

Set
$$x_3=0$$
, $x_4=1$ and solve (xx) : $h_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

- 4. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *subspace* as clear as possible.
 - (a) [3pt] Define what is a subspace and use a few sentences to explain the definition.

(b) [2pt] Provide an example of a subspace and an example of a set that is not a subspace. Provide your reasons.

5. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ t \end{bmatrix}.$$

Find t such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

$$\left(\overrightarrow{A} | \overrightarrow{b} \right) = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 2 & 3 \\ 1 & 1 & 3 & 3 & 4 \end{bmatrix}$$

$$\begin{array}{c}
\begin{array}{c}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 7
\end{array}$$

$$\begin{array}{c}
A \overset{\circ}{X} = \overrightarrow{b} \text{ is consistent if and only if } t = 7.
\end{array}$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	