國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第一次期中考

October 3, 2022

Midterm 1

姓名 Name: Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- Please answer the problems in English.

1. Let

$$\mathbf{u} = \begin{bmatrix} 5 \\ 1 \\ 3 \\ 1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) [1pt] Find the length of u.

$$||M| = \sqrt{5^2 + 1^2 + 3^2 + 1^2} = 6.$$

(b) [1pt] Let θ be the angle between the vectors **u** and **v**. Find $\cos \theta$.

$$||V|| = \int (\frac{1}{7} + \frac{1}{7} + \frac{1}{7})^2 = 2.$$

$$\langle U, V \rangle = 5 \cdot (+1 - (+3) \cdot (+1 - 1) = 10$$

$$\cos \theta = \frac{\langle u, v \rangle}{||u|| \cdot ||v||} = \frac{10}{6 \cdot 2} = \frac{5}{6}$$

(c) [1pt] Find a vector in $span(\{u, v\})$. Provide your reasons.

For example,
$$1\vec{u}+1\vec{v}=\begin{bmatrix} 6\\ 2\\ 4 \end{bmatrix}$$
 is in span $(\vec{s}\vec{u},\vec{v}\vec{s})$.

(d) [1pt] Find a vector **NOT** in span($\{u, v\}$). Provide your reasons.

For example,
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 is not in Span $(\{\vec{y}, \vec{V}\})$.

Since $\begin{bmatrix} 5 \\ 1 \end{bmatrix} \begin{bmatrix} C_1 \\ S_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ has no solution.

(e) [1pt] Find a vector that is orthogonal to both \mathbf{u} and \mathbf{v} .

Solve.
$$5x+y+3z+w=0$$
 = $5x+y+z+w=0$
 $x+y+z+w=0$ $-4y-2z-4w=0$.
For example, $\begin{bmatrix} 0\\ -1\\ 0\\ 1 \end{bmatrix}$ is a solution.

2. Let

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & -6 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

(a) [2pt] Draw the vector **b** and the subspace Col(A) in \mathbb{R}^2 . Mark at least one vector in Col(A) in your drawing. Does $A\mathbf{x} = \mathbf{b}$ have a solution for \mathbf{x} ?

No solution

since to & Col(A).

(b) [1pt] Draw the subspace $\ker(A)$ and its normal vector in \mathbb{R}^3 .

$$ker(A) = \begin{cases} \begin{cases} x \\ y \\ z \end{cases} \\ x-3y + 2z = 0 \end{cases}$$

$$\begin{cases} -\frac{1}{2} \\ normal \ vector . \end{cases}$$

(c) [2pt] Find \mathbf{h}_1 and \mathbf{h}_2 such that $\ker(A) = \operatorname{span}(\{\mathbf{h}_1, \mathbf{h}_2\})$.

Solve.
$$x-3y+22=0$$
.
Set $y=1, z=0 \rightarrow h_1 = \begin{bmatrix} 3\\ 1 \end{bmatrix}$
Set $y=1, z=0 \rightarrow h_2 = \begin{bmatrix} -2\\ 0 \end{bmatrix}$

Set
$$g=0, \xi=1 \Rightarrow \frac{1}{h_2} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

3. Let

$$A = \begin{bmatrix} 1 & 5 & -4 & -2 \\ -1 & -5 & 4 & 3 \\ 2 & 10 & -8 & -6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -5 \\ 6 \\ -12 \end{bmatrix}.$$

(a) [2pt] Find the reduced echelon form of the augmented matrix $[A \mid b]$.

(b) [3pt] Find \mathbf{p} , \mathbf{h}_1 , and \mathbf{h}_2 such that the set of general solutions of $A\mathbf{x} = \mathbf{b}$ is

$$\{\mathbf{p} + c_1\mathbf{h}_1 + c_2\mathbf{h}_2 : c_1, c_2 \in \mathbb{R}\}.$$

$$A\bar{x}=\bar{b} \iff \begin{cases} x_1 + 5x_2 - 4x_3 & = -3 \\ x_4 & = 1 \end{cases}$$

$$A\bar{x}=\bar{b} \iff \begin{cases} x_1 + 5x_2 - 4x_3 & = 0 \\ x_4 & = 0 \end{cases}$$

$$x_4 = 0 \qquad (***).$$
Free vas = x_2, x_3

$$Solve (**):$$

$$Set x_2 = x_3 = 0 \implies \bar{p} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}.$$

$$Solve (***):$$

$$Set x_3 = 1, x_3 = 0 \implies \bar{p} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}.$$

$$Set x_3 = 1, x_3 = 0 \implies \bar{p} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}.$$

$$Set x_4 = 0 \qquad (***)$$

$$Set x_5 = 1, x_5 = 0 \implies \bar{p} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}.$$

- 4. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *subspace* as clear as possible.
 - (a) [3pt] Define what is a subspace and use a few sentences to explain the definition.

(b) [2pt] Provide an example of a subspace and an example of a set that is not a subspace. Provide your reasons.

5. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ t \end{bmatrix}.$$

Find t such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

See ver. A.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	