國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第二次期中考

November 14, 2022

Midterm 2

姓名 Name : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions, score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. [1pt] Find a 3×4 matrix A with rank(A) = 1 such that every entry of A is nonzero. Provide your reasons.

2. [1pt] Find a 3×4 matrix A with null(A) = 1 such that every entry of A is nonzero. Provide your reasons.

3. [1pt] Find a polynomial of degree at most 2 that is in span $\{1-x,1-x^2\}$.

or any
$$a+bx+cx^2$$
 with $a+b+c=0$

- 4. [1pt] Find a polynomial of degree at most 2 that is NOT in span{1 $x, 1-x^2$ }. e.g. x^2 , since $f(1-x) + f(1-x^2) = x^2$ has no solution.
- 5. [1pt] Write $p(x) = 1 + x + x^2$ as a linear combination of $\{1, 1 x, (1 x)^2\}$.

Suppose
$$a \cdot 1$$

$$b \cdot 1 - x$$

$$+) c \cdot 1 - 2x + x^{2}$$

$$1 + x + x^{2}$$
Then $\begin{cases} a+b+c=1 \\ -b-2c=1 \end{cases} \Rightarrow \begin{cases} a-3 \\ b=-3 \\ c=1 \end{cases}$

$$S_0 = 3 - 3(1-x) + 1 \cdot (1-x)^2$$

6. Let

$$A = \begin{bmatrix} 1 & -3 & -2 & 1 \\ 2 & -6 & -4 & 3 \\ -5 & 15 & 10 & -10 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & -3 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

such that R is the reduced echelon form of A.

(a) [1pt] Find a basis of Row(A).

$$\beta_{R} = \left\{ \begin{array}{c} C1.3 & -201, \\ C0 & 0 & 017 \end{array} \right\}.$$

(b) [1pt] Find a basis of Col(A).

$$\beta = \begin{cases} \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -10 \end{bmatrix} \end{cases}$$

(c) [2pt] Find a basis of ker(A).

[2pt] Find a basis of ker(A).

Set
$$\chi_{2}=1$$
, $\chi_{3}=0 \Rightarrow \tilde{h}_{1}=\begin{bmatrix} 3\\1\\0\\0 \end{bmatrix}$

Set $\chi_{2}=0$, $\chi_{3}=1 \Rightarrow \tilde{h}_{2}=\begin{bmatrix} 2\\0\\0 \end{bmatrix}$

free

$$\mathcal{F}_{K}=\tilde{h}_{1}$$
, \tilde{h}_{2} .

(d) [1pt] Find a basis of $\ker(A^{\top})$.

Since
$$\dim(\ker(A^T)) = 3 - \operatorname{rank}(A) = 3 - 2 = 1$$
, any nonzero vector in $\ker(A^T)$ form a basis.

Solve $A^T \vec{x} = \vec{0}$ and get one solution $\vec{x} = \begin{bmatrix} -5 \\ 5 \end{bmatrix}$.

$$= \int_{-5}^{-5} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$
 is a basis.

- 7. Let V be a subspace with a basis $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$. Let $\alpha = \{\mathbf{a}_1, \mathbf{a}_2\}$ be a subset in V. Suppose it is known that $\mathbf{a}_1 = \mathbf{b}_1 + 2\mathbf{b}_3$ and $\mathbf{a}_2 = \mathbf{b}_1 + 3\mathbf{b}_3$.
 - (a) [1pt] Write \mathbf{b}_1 as a linear combination of $\{\mathbf{a}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

 Since $\overrightarrow{a}_1 = \overrightarrow{b}_1 + 2\overrightarrow{b}_3$, we know $\overrightarrow{b}_1 = \overrightarrow{a}_1 + 0\overrightarrow{b}_2 2\overrightarrow{b}_3$,
 - (b) [2pt] Show that $\{a_1,b_2,b_3\}$ is linearly independent. In basis exchange leminary

Suppose
$$C, \vec{a}, \dagger C_{2}\vec{b}_{3} + C_{3}\vec{b}_{3} = \vec{0}$$
 for some $C_{1}, C_{2}, C_{3} \in \mathbb{R}$.
Then $C_{1}, (\vec{b}_{1} + 2\vec{b}_{3}) + C_{2}\vec{b}_{2} + C_{3}\vec{b}_{3} = \vec{0}$

$$= C_{1}\vec{b}_{1} + C_{2}\vec{b}_{3} + (2C_{1} + C_{3})\vec{b}_{3} = \vec{0}$$
Since β is a basis and is indep,
we know $C_{1} = C_{2} = 2C_{1} + C_{3} = 0$. $C_{2} = C_{3} = 0$.

Therefore, $\{\vec{a}_{1}, \vec{b}_{2}, \vec{b}_{3}\}$ is indep.

(c) [2pt] Find a basis S of V such that $\alpha \subseteq S \subseteq \alpha \cup \beta$.

By basis exchange lemma and the fact
$$\vec{q}_1 = \vec{b}_1 + 2\vec{b}_3$$
, applying $\{\vec{a}_1, \vec{b}_2, \vec{b}_3\} = \beta \cup \{\vec{a}_1\} \setminus \{\vec{b}_1\}$ is a basis of V .

Apply the lemma to $\{\vec{a}_1 - \vec{b}_2 - \vec{b}_3\}$ with $\vec{a}_3 = \vec{b}_1 + 3\vec{b}_3$ $= \vec{a}_1 + \vec{b}_3$, $\{\vec{a}_1, \vec{b}_2\}$ is a basis of V .

- 8. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *basis* as clear as possible.
 - (a) [3pt] Suppose V is a subspace. Define what is a basis of V and use a few sentences to explain the definition.

(b) [2pt] Let $V = \mathbb{R}^3$. Provide an example of a basis of V and an example of a subset of V that is not a basis. Provide your reasons.

9. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Find a basis of $Col(A) \cap Col(B)$.

$$Col(A) = \begin{cases} \begin{cases} 97 \\ 6 \\ 6 \end{cases} \end{cases} = A.b. elR \end{cases}$$

$$Col(B) = \begin{cases} \begin{cases} 79 \\ 9 \\ 6 \end{cases} \end{cases} = A.b. elR \end{cases}$$

$$So. Col(A) \wedge Col(B) = \begin{cases} 1 \\ k \end{cases} \end{cases} = A.b. elR \end{cases}$$

$$= Span \begin{cases} \begin{cases} 177 \\ 177 \end{cases} \end{cases}$$

$$So. \begin{cases} \begin{cases} 177 \\ 177 \end{cases} \end{cases}$$

$$So. \begin{cases} \begin{cases} 177 \\ 177 \end{cases} \end{cases}$$

$$So. So. So. So. So. So. So. So. So. Col(A) \(177 \) \$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	