國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第二次期中考

November 14, 2022

Midterm 2

姓名 Name : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- Please answer the problems in English.

1. [1pt] Find a 3×4 matrix A with rank(A) = 2 such that every entry of A is nonzero. Provide your reasons.

Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$
. Then $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has rank $(A) = 2$.

2. [1pt] Find a 3×4 matrix A with null(A) = 2 such that every entry of A is nonzero. Provide your reasons.

3. [1pt] Find a polynomial of degree at most 2 that is in span $\{1+x,1+x^2\}$.

e.g.
$$1+x^2$$

or any $a+bx+cx^2$ with $a-b-c=0$

4. [1pt] Find a polynomial of degree at most 2 that is NOT in span{1 + $x, 1 + x^2$ }. e.g. χ^2 Since $p(1+x) + q(1+x^2) = \chi^2$ has no solution.

5. [1pt] Write $p(x) = 1 + x + x^2$ as a linear combination of $\{1, 1 + x, (1+x)^2\}$.

Solve
$$a \cdot 1$$

 $b \cdot 1 + x$
 $+) \quad c \cdot 1 + 2x + x^{2}$
 $1 + x + x^{2}$
Then $\begin{cases} a + b + c = 1 \\ b + 2c = 1 \end{cases} = \begin{cases} a = 1 \\ b = -1 \\ c = 1 \end{cases}$
 $\begin{cases} c = 1 \end{cases}$
 $\begin{cases} c = 1 \end{cases}$

6. Let

$$A = \begin{bmatrix} 1 & -1 & 3 & -13 \\ -1 & 1 & -2 & 9 \\ 0 & 0 & -4 & 16 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

such that R is the reduced echelon form of A.

(a) [1pt] Find a basis of Row(A).

(b) [1pt] Find a basis of Col(A).

$$\beta_{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \right\}.$$

(c) [2pt] Find a basis of ker(A).

$$\chi_{2}, \chi_{4}$$
 are free vars.
Set Solve $R\begin{bmatrix} \chi_{2}^{1} \\ \chi_{3}^{2} \\ \chi_{4} \end{bmatrix} = \vec{\delta}$. Set $\chi_{2}=1$, $\chi_{4}=0 \Rightarrow \vec{h}_{1}=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.
Set $\chi_{2}=1$, $\chi_{4}=1 \Rightarrow \vec{h}_{3}=\begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$.

(d) [1pt] Find a basis of $\ker(A^{\top})$.

Since
$$\dim(\ker(A^T)) = 3 - \operatorname{rank}(A) = 3 - 2 = 1$$
,
 $\ker(A^T) = \operatorname{span} \{\vec{v}\}\$ for any nonzero vector $\vec{v} = \ker(A^T)$.
Solve $A^T \vec{x} = \vec{v} \Rightarrow \text{one solution is } \begin{bmatrix} 47 \\ 4 \end{bmatrix}$.
 $\vec{\beta} = \{\vec{k}\}$

- 7. Let V be a subspace with a basis $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$. Let $\alpha = \{\mathbf{a}_1, \mathbf{a}_2\}$ be a subset in V. Suppose it is known that $\mathbf{a}_1 = \mathbf{b}_1 + 4\mathbf{b}_3$ and $\mathbf{a}_2 = \mathbf{b}_1 + 5\mathbf{b}_3$.
 - (a) [1pt] Write \mathbf{b}_1 as a linear combination of $\{\mathbf{a}_1, \mathbf{b}_2, \mathbf{b}_3\}$. Since $\vec{a}_1 = \vec{b}_1 + 4\vec{b}_3$, we know $\vec{b}_1 = \vec{a}_1 + 0\vec{b}_2 - 4\vec{b}_3$
 - (b) [2pt] Show that $\{a_1, b_2, b_3\}$ is linearly independent.

Suppose
$$C_1 \vec{a_1} + C_2 \vec{b_2} + C_3 \vec{b_3} = \vec{0}$$
.
Then $C_1(\vec{b_1} + 4\vec{b_3}) + C_2 \vec{b_2} + C_3 \vec{b_3} = \vec{0}$
 $= C_1 \vec{b_1} + C_2 \vec{b_2} + (4C_1 + C_3) \vec{b_3} = \vec{0}$.
Since β is indep, $C_1 = C_2 = 4C_1 + C_3 = 0 \implies C_1 = C_2 = C_3 = 0$.
Thus, $\{\vec{a_1}, \vec{b_2}, \vec{b_3}\}$ is indep.

(c) [2pt] Find a basis S of V such that $\alpha \subseteq S \subseteq \alpha \cup \beta$.

Apply the basis exchange lemma to β with $\alpha_1 = \vec{b}_1 + 4\vec{b}_3$,

then $\beta \cup \{\vec{a}_1, \vec{g}_1\} + \{\vec{b}_1, \vec{f}_2\} + \{\vec{a}_1, \vec{b}_2\} + \{\vec{b}_3\} + \{\vec{b}_3\} + \{\vec{b}_3\} + \{\vec{b}_3\} + \{\vec{b}_4\} + \{\vec{b}_3\} + \{\vec{b}_4\} + \{\vec{b}_3\} + \{\vec{b}_4\} + \{\vec{b}_4\}$

- 8. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *basis* as clear as possible.
 - (a) [3pt] Suppose V is a subspace. Define what is a basis of V and use a few sentences to explain the definition.

(b) [2pt] Let $V = \mathbb{R}^3$. Provide an example of a basis of V and an example of a subset of V that is not a basis. Provide your reasons.

9. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Find a basis of $Col(A) \cap Col(B)$.

See Ver. A.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	