國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數(一)

MATH 103A / GEAI 1215A: Linear Algebra I

期末考

December 18, 2023

Final Exam

姓名 Name: Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

6 pages of questions,

score page at the end

on the test paper To be answered: Duration:

110 minutes

Total points:

20 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. [1pt] Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the projection onto span $\left(\left\{\begin{bmatrix} 1\\-1\end{bmatrix}\right\}\right)$. Is f a bijection? **Provide your reasons.**

No. [1] is not in the range, so f is not surjective.

2. [1pt] Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the counterclockwise rotation by 30°. Is f a bijection? **Provide your reasons.**

Yes. It exist by rotation by 30° clockwisely

3. [1pt] Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x - y \\ y - x \end{bmatrix}.$$

Find range(f).

range cf) =
$$\left[\begin{bmatrix} x - y \\ y - x \end{bmatrix} : x, y \in \mathbb{R} \right] = \text{span} \left[\begin{bmatrix} 1 \\ -1 \end{bmatrix} \right]$$

4. [1pt] Let \mathcal{P}_d be the vector space of polynomials of degree at most d. Let $f: \mathcal{P}_2 \to \mathcal{P}_3$ be the function defined by $p \mapsto x \cdot p + p'$, where p' is the derivative of the polylnomial p. Is f a linear function? Provide your reasons.

Sons.
Yes.
$$f(p_1+p_2) = x \cdot (p_1+p_2) + (p_1+p_2) = f(p_1) + f(p_2)$$

 $= xp_1 + xp_2 + p_1' + p_2' = f(p_1) + f(p_2)$
 $f(r \cdot p) = x \cdot (rp) + (rp)' = r \cdot xp + rp' = r \cdot f(p)$

5. [1pt] Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $x \mapsto x^2$. Is f a linear function? **Provide your reasons.**

$$N_0$$
. $f(2x) = 4x^2 \neq 2$, $f(x)$

6. Let

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ \mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \ \mathbf{b}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}.$$

Let $\alpha = \{\mathbf{a}_1, \mathbf{a}_2\}$ and $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases of

$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \right\}.$$

(a) [1pt] Find the vector **u** such that $[\mathbf{u}]_{\beta} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$[M]_{\beta} = []$$
 means $\vec{h} + \vec{b}_{2} = [-2]$

(b) [1pt] Find $[\mathbf{v}]_{\alpha}$.

$$\vec{\nabla} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ so } \vec{L} \vec{V} \end{bmatrix}_{\alpha} = \begin{bmatrix} -1/2 \\ \frac{3}{2} \end{bmatrix}.$$

(c) [1pt] Find $[\mathbf{v}]_{\beta}$.

$$\vec{v} = 2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} -1 \\ 0 \end{bmatrix} = 2\vec{b}_1 - 3\vec{b}_2 + 3\vec{b}_2 + 3\vec{b}_3 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

(d) [2pt] Find the change of basis matrix $[id]^{\beta}_{\alpha}$ from α to β .

$$[idJ^{\beta} = \begin{bmatrix} c\bar{a}_{i}J_{\beta} & c\bar{a}_{z}J_{\beta} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$

7. Let $f: \mathbb{R}^5 \to \mathbb{R}^3$ be a function defined by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \mapsto \begin{bmatrix} x_1 - 5x_2 - 3x_3 - 2x_4 + 9x_5 \\ x_4 - 4x_5 \\ 5x_1 - 25x_2 - 15x_3 - 13x_4 + 57x_5 \end{bmatrix}$$

(a) [2pt] Find a matrix A such that $f(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^5$.

(b) [3pt] Find a basis of ker(f).

See ver. A.

8. [5pt] Mathematical essay: Write a few paragraphs to introduce *isomorphism*.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

9. [extra 5pt] Let

$$\alpha = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ and } \beta = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

be bases of \mathbb{R}^3 . Given that

$$[f]^{\beta}_{\beta} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

find $[f]^{\alpha}_{\alpha}$.

See Ver. A.

10. [extra 2pt] Let

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

be the vector space of all 2×2 matrices. Let

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then $\beta = \{E_1, E_2, E_3, E_4\}$ is a basis of V. Define a function $f: V \to V$ by

$$X \mapsto \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} X.$$

Find the matrix representation $[f]^{\beta}_{\beta}$ of the function f with respect to the bases β and β .

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	20 (+7)	