國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第二次期中考

November 13, 2023

Midterm 2

學號 Student ID # : ______

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

- 1. [1pt] Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x = 1 \right\}$. Is V a subspace in \mathbb{R}^2 ? Provide your reason.

 No. We have $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \notin V$.
- 2. [1pt] Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : (x-y)^2 = 0 \right\}$. Is V a subspace in \mathbb{R}^2 ? Provide your reason.

3. Let

$$A = \begin{bmatrix} 3 & 3 & 6 & 6 \\ 1 & 1 & 2 & 2 \\ 4 & 4 & 5 & 5 \end{bmatrix}.$$

(a) [1pt] Find a basis of Row(A).

$$\frac{\{(3,3,6,6),(4,4,5,5)^3\}}{\text{or}}$$

(b) [1pt] Find a basis of Col(A).

$$\left\{\begin{bmatrix} 2\\4 \end{bmatrix},\begin{bmatrix} 6\\2 \end{bmatrix}\right\}$$

(c) [1pt] Find rank(A) and null(A).

rank
$$(A)=2$$

null $(A)=2$

4. [3pt] Let

$$S = \{(x-2)(x-4), (x-2)(x-6), (x-4)(x-6)\}.$$

Show that S is linearly independent, or provide a certificate of S not being independent.

We show that
$$S$$
 is linearly independent.

Suppose $G(x-2)(x-4) + C_2(x-2)(x-6) + C_3(x-4)(x-6) = 0$

Plug in $X=2$. Then $G=0$.

 $G=0$.

 $G=0$.

 $G=0$.

 $G=0$.

So $G=0$.

Then $G=0$.

Then $G=0$.

5. [2pt] Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ be vectors in \mathbb{R}^3 . Suppose we know

$$\mathrm{span}(\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}) = \mathrm{span}(\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\}).$$

What is the relation between \mathbf{u}_4 and the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$? Provide an example to demonstrate this behavior.

See ver. A.

6. [5pt] Let

$$A = \begin{bmatrix} 1 & -1 & -5 & 3 & 7 \\ 2 & -2 & -10 & 7 & 15 \\ -4 & 4 & 20 & -13 & -29 \end{bmatrix}.$$

Find a basis of ker(A).

See ver. A.

7. [5pt] Mathematical essay: Write a few paragraphs to introduce the notion of a basis.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

8. [extra 2pt] Let V be the space of all functions defined on $(0, \infty)$. Determine if $S = \{\ln(x), \ln(x^2)\}$ is linearly independent or not.

See ver. A.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	