國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY
線性代數(一)	MATH 103A / GEAI 1215A: Linear Algebra I
期末考	December 25, 2024 Final Exam

姓名 Name :_____

學號 Student ID # : _____

Lecturer:Jephian Lin 林晉宏Contents:cover page,6 pages of questions,
score page at the endTo be answered:on the test paperDuration:110 minutesTotal points:20 points + 7 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 2 & 2 & 2 & 2 & -2 \\ 2 & 5 & 5 & 5 & -5 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

It is known that R is an echelon form of A.

(a) [1pt] Find at least two elements in $\ker(A)$.

(b) [1pt] Find at least two elements **not** in ker(A).

(c) [1pt] Find a basis of Row(A).

(d) [1pt] Find a basis of ker(A).

(e) [1pt] Find a basis of Col(A).

2. Let $\mathcal{P}_2 = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in \mathbb{R}\}$ be the vector space of polynomial of degree at most 2. Let

$$B_1 = \langle 1, x, x^2 \rangle, B_2 = \langle 1, (x-1), (x-1)^2 \rangle, B_3 = \langle f_1(x), f_2(x), f_3(x) \rangle,$$

where

$$f_1(x) = \frac{(x-4)(x-6)}{(2-4)(2-6)}, \ f_2(x) = \frac{(x-2)(x-6)}{(4-2)(4-6)}, \ f_3(x) = \frac{(x-2)(x-4)}{(6-2)(6-4)}$$

It is known that each of B_1 , B_2 , B_3 is a basis of \mathcal{P}_2 . Let

$$p(x) = 3 + 1x + 2x^2$$
 and $\mathbf{u} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$.

- (a) [1pt] Find $\operatorname{Rep}_{B_1}(p(x))$.
- (b) [1pt] Find $\operatorname{Rep}_{B_2}(p(x))$.

(c) [1pt] Find $\operatorname{Rep}_{B_3}(p(x))$.

(d) [1pt] Find a polynomial q(x) such that $\operatorname{Rep}_{B_2}(q(x)) = \mathbf{u}$.

(e) [1pt] Find a polynomial q(x) such that $\operatorname{Rep}_{B_3}(q(x)) = \mathbf{u}$.

3. Let $\mathcal{M}_{2\times 2}$ be the vector space of all 2×2 real matrices. Let

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

be a subspace of $\mathcal{M}_{2\times 2}$.

(a) [1pt] Find a basis of $\mathcal{M}_{2\times 2}$.

(b) [1pt] Find at least two elements in V.

(c) [3pt] Find a basis of V. Hint: Write down the equations for a, b, c, d.

4. [5pt] Mathematical essay: Write a few paragraphs to introduce dimension.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

5. Let $B = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4 \rangle$ be a basis of a vector space V. Suppose $\mathbf{p} = \mathbf{u}_1 + \mathbf{u}_4$. Let

$$B_1 = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{p}, \mathbf{u}_4 \rangle, \text{ and} \\ B_2 = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{p} \rangle.$$

(a) [extra 1pt] Explain why B_1 is not a basis of V.

(b) [extra 2pt] Show that B_2 is independent.

(c) [extra 2pt] Show that $\operatorname{span}(B_2) = V$.

6. [extra 2pt] Let

$$V = \{ (x+1)(a+bx+cx^2) : a, b, c \in \mathbb{R} \}.$$

Find a basis of V.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	20 (+7)	