國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第二次期中考

November 20, 2024

Midterm 2

姓名 Name: Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. Let

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}.$$

(a) [1pt] List any four elements in V.

(b) [1pt] Is V closed under addition? Provide your reasons.

No, e.g.,
$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ -5 \end{bmatrix}$ are in V
but $\begin{bmatrix} 3 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ -5 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \notin V$.

(c) [1pt] Is V closed under scalar multiplication? Provide your reasons.

Then
$$[kx]$$
 also has $(kx)(ky) = k^2 \cdot xy \ge 0$
for any $k \in \mathbb{R}$.

(d) [1pt] Does V contain a zero vector? If yes, what is the zero vector in V?

(e) [1pt] Find the additive inverse of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

$$\begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

2. Let $S = {\mathbf{u}_1, \mathbf{u}_2}$ with

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

(a) [1pt] Find an element in [S].

(b) [1pt] Find an element not in [S].

Any element
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \in [S]$$
 much have $x_1 = x_4$,

(c) [1pt] Prove, by definition, that [S] is closed under addition.

Note that
$$ESJ = F q \vec{u}_1 + q \vec{u}_2 : q_1, q_2 \in \mathbb{R}^3$$
.
Suppose $q_1 \vec{u}_1 + q_2 \vec{u}_2 \in \mathbb{C}SJ$ and $b_1 \vec{u}_1 + b_2 \vec{u}_2 \in \mathbb{C}SJ$.
Then their sum is $(q_1 tb_1) \vec{u}_1 + (q_2 tb_3) \vec{u}_2 \in \mathbb{C}SJ$.

(d) [1pt] Prove, by definition, that [S] is closed scalar multiplication.

Suppose
$$a_1\vec{u}_1 + a_2\vec{u}_2 \in \mathbb{Z} \subseteq \mathbb{Z}$$
 and $k \in \mathbb{R}$.
Then $k(a_1\vec{u}_1 + a_2\vec{u}_2) = (kg/\vec{u}_1 + (ka_2)\vec{u}_2 \in \mathbb{Z})$

(e) [1pt] Is S an independent set? Provide your reasons.

Yes. Suppose
$$C_1 \cdot C_2 \cdot C_3 = C_1 \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} + C_2 \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

for some $C_1 \cdot C_2 + C_3 \cdot C_4$.
Then $\begin{cases} C_1 + C_2 \cdot C_4 - C_4 \cdot C_5 = C_4 \cdot C_4 - C_4 \cdot C_5 = C_4 \cdot C_4 - C_4 - C_4 \cdot C_5 = C_4 \cdot C_5 - C_4 \cdot C_5 = C_4 \cdot C_5 - C_5 \cdot C_5 + C_5 \cdot C_5 = C_5 \cdot C_5 \cdot C_5 + C_5 \cdot C_5 - C_5 \cdot C_5 + C_5 \cdot C_$

3. Let $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6}$ be the columns of

(a) [2pt] Find two different nontrivial linear relations in S.

A =
$$\frac{1}{2} = \frac{2}{2} =$$

(b) [3pt] Find a subset $T \subset S$ such that T is linearly independent and [T] = [S]. Provide your reasons.

By
$$-2\vec{u}_3 + \vec{u}_5 = \vec{0}$$
. Remove \vec{u}_3 will not change the span. By $-\vec{u}_4 - \vec{u}_5 + \vec{u}_6 = \vec{0}$ Removing \vec{u}_6 will not change the span. Choose $T = \{\vec{u}_1, \vec{u}_2, \vec{u}_4, \vec{v}_5\}$.

There is no solution above with $C_3 = C_6 = 0$.

4. [5pt] Mathematical essay: Write a few paragraphs to introduce *linear* independence.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

5. [extra 2pt] Let $S = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ be a set of vectors. Suppose S is linearly independent. Show that $T = \{\mathbf{x}, \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} + \mathbf{z}\}$ is also linearly independent.

Suppose
$$(4\vec{x} + (2\vec{x} + \vec{y}) + (3\vec{x} + \vec{y} + \vec{z}) = \vec{0}$$

Then $(c_1 + c_2 + c_3)\vec{\gamma} + (c_2 + c_3)\vec{y} + (3\vec{z} = \vec{0})$.
Since S is indep, we have
$$(c_1 + c_2 + c_3 = 0)$$

$$(c_3 + c_2 + c_3 = 0)$$

$$(c_3 + c_4 + c_5 = 0)$$

$$(c_3 + c_4 + c_5 = 0)$$

$$(c_4 + c_4 + c_5 = 0)$$

$$(c_5 + c_4 + c_5 = 0)$$

$$(c_7 + c_5 + c_5 = 0)$$

$$(c_7 + c_7 + c_7 + c_7 = 0)$$

$$(c_7 + c_7 + c_7 + c_7 = 0)$$

$$(c_7 + c_7 + c_7 + c_7 = 0)$$

$$(c_7 + c_7 + c_7 +$$

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	