國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY
線性代數(二)	MATH 104A / GEAI 1209A: Linear Algebra II

第一次期中考

March 19, 2025

Midterm 1

姓名 Name :

學號 Student ID # :

Lecturer: Jephian Lin 林晉宏 Contents: cover page, 5 pages of questions, score page at the end To be answered: on the test paper Duration: 110 minutes **20 points** + 2 extra points Total points:

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining** it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

- 1. Let A be a 3×3 matrix whose rows are $\mathbf{x}, \mathbf{y}, \mathbf{z}$. Suppose det(A) = 5.
 - (a) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x}, 3\mathbf{x} + \mathbf{y}, \mathbf{z}$. Find $\det(B)$.

(b) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x}, \mathbf{y}, 5\mathbf{z}$. Find det(B).

(c) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{z}, \mathbf{y}, \mathbf{x}$. Find det(B).

(d) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{y}, \mathbf{z}, \mathbf{x}$. Find det(B).

(e) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x} + \mathbf{y}, \mathbf{y} + \mathbf{z}, \mathbf{z} + \mathbf{x}$. Find det(B). 2. Find the determinant of

$$A = \begin{bmatrix} 1 & 2 & 0 & -3 & 2 \\ -3 & -5 & -2 & 12 & -7 \\ -3 & -6 & 1 & 9 & -9 \\ 16 & 26 & 14 & -68 & 30 \\ -9 & -16 & -3 & 34 & -21 \end{bmatrix}.$$

3. [2pt] State the definition of the determinant of a matrix, using the row operations.

4. [1pt] Use the definition to prove that if A is a square matrix whose 5-th row is 10 times its 4-th row, then det(A) = 0.

5. [2pt] Use the definition to prove that if the rows of A are dependent, then det(A) = 0.

6. [5pt] Mathematical essay: Write a few paragraphs to introduce the *permutation expansion*.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

7. [extra 2pt] Let

	0	1	0	0	0	0	0 0 0	0	0	1	
	1		1	0	0	0	0	0	0	0	
	0	1	0	1	0	0	0	0	0	0	
	0	0	1	0	1	0	0	0	0	0	
<u> </u>	0	0	0	1	0	1	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	0	0	0	
A -	0	0	0	0	1	0	1	0	0	0	•
	0	0	0	0	0	1	0	1	0	0	
	0	0	0	0	0	0	1	0	1	0	
	0	0	0	0	0	0	0 0	1	0	1	
	1	0	0	0	0	0	0	0	1	0	

Find det(A).

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	