國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (二)

MATH 104A / GEAI 1209A: Linear Algebra II

第一次期中考

March 19, 2025

Midterm 1

姓名 Name: _____ Solution

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions,

score page at the end

To be answered: on the test paper

Duration:

110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

- 1. Let A be a 3×3 matrix whose rows are $\mathbf{x}, \mathbf{y}, \mathbf{z}$. Suppose $\det(A) = 5$.
 - (a) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x}, 3\mathbf{x} + \mathbf{y}, \mathbf{z}$. Find $\det(B)$.

 A 3Pt+P2 B, so $\det(B) = \det(A) = \mathbf{t}$
 - (b) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x}, \mathbf{y}, 5\mathbf{z}$. Find $\det(B)$.

(c) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{z}, \mathbf{y}, \mathbf{x}$. Find $\det(B)$.

$$A = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

(d) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{y}, \mathbf{z}, \mathbf{x}$. Find $\det(B)$.

A
$$f_2 \leftrightarrow f_2$$
, g , so $det(B) = (H)^2 det(A) = 5$

(e) [1pt] Let B be the 3×3 matrix whose rows are $\mathbf{x} + \mathbf{y}, \mathbf{y} + \mathbf{z}, \mathbf{z} + \mathbf{x}$. Find $\det(B)$.

2. Find the determinant of

$$A = \begin{bmatrix} 1 & 2 & 0 & -3 & 2 \\ -3 & -5 & -2 & 12 & -7 \\ -3 & -6 & 1 & 9 & -9 \\ 16 & 26 & 14 & -68 & 30 \\ -9 & -16 & -3 & 34 & -21 \end{bmatrix}.$$

$$|A| = \begin{vmatrix} 1 & 2 & 0 & -3 & 2 \\ 0 & 1 & -2 & 3 & -1 \end{vmatrix}$$

$$| 1 & 2 & 0 & -3 & 2 \\ 0 & 1 & -2 & 3 & -1 \end{vmatrix}$$

$$| 2 & 0 & -3 & 2 \\ | 2 & 0 & -3 & 2 \end{vmatrix}$$

$$| 1 & 2 & 0 & -3 & 2 \\ | 2 & -3 & 7 & -3 \end{vmatrix}$$

$$| 1 & 2 & 0 & -3 & 2 \\ | 2 & -3 & 7 & -3 \end{vmatrix}$$

$$| 1 & 2 & 0 & -3 & 2 \\ | 1 & -1 & 0 & 3 \\ | 2 & 0 & -2 & -2 \\ | 0 & 1 & 2 \end{vmatrix}$$

$$| 2 & 0 & -3 & 2 \\ | 1 & 0 & 3 & 2 \\ | 2 & 0 & 1 & 2 \end{vmatrix}$$

$$| 1 & 0 & 3 & 2 \\ | 2 & 0 & 1 & 2 \end{vmatrix}$$

$$| 2 & 0 & -2 & -2 \\ | 1 & 2 & 2 \end{vmatrix}$$

$$| 2 & 0 & -2 & -2 \\ | 2 & 1 & 2 \end{vmatrix}$$

$$| 2 & 0 & -2 & -2 \\ | 2 & 1 & 2 \end{vmatrix}$$

3. [2pt] State the definition of the determinant of a matrix, using the row operations.

4. [1pt] Use the definition to prove that if A is a square matrix whose 5-th row is 10 times its 4-th row, then det(A) = 0.

5. [2pt] Use the definition to prove that if the rows of A are dependent, then det(A) = 0.

See ver. A:

6. [5pt] Mathematical essay: Write a few paragraphs to introduce the *permutation expansion*.

Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

7. [extra 2pt] Let

Find det(A).

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	