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Abstract

The minimum rank problem of a graph G is to determine the smallest rank
over all real symmetric matrices whose 2j-entry, 7 # j, is nonzero whenever ij
is an edge and is zero otherwise. Equivalently, it is the same to determine the
largest nullity over those matrices. This value is called the maximum nullity
M(G). The zero forcing number Z(G) is the minimum size of a zero forcing
set and is useful on studying the minimum rank problem. And the path cover
number P(G) is the minimum number of vertex disjoint induced paths which
cover the vertices of G. In the case that G is a graph with cut-vertices, we
give a reduction formula to compute the zero forcing number Z(G) by the
zero forcing numbers of its subgraphs. We also discuss a condition called the
strong PZ condition such that P(G) is equal to Z(G) under this condition.

It is well known that Z (IG) é-[ﬂgf‘(G{ f({t‘@il . ‘gI.‘E?,phS G. In this thesis, we
introduce a sharper upR:e'r" :-b;)un:cf,..i’he ex'};ﬁagil.stiv-e;.~ {E'.e'r,o forcing number Z (G),

which satisfies Z (G)\g Z (dl§ >M(G) for a ls G ."dF_‘l_J;_rthermore, by doing
a operation called}ﬁh.@;ﬁe g p}ﬂﬁﬂi we.get s é':'ﬁﬂpper bounds less than
N T

Z(@) for some special cases. I,
L=

Finally, we give ah e
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1 Introduction

As the concept of incidence matrix showing, there is a natural relation between
symmetric matrices and graphs. For an n x n real symmetric matrix A, we consider

the corresponding graph G = G(A) with
vertex set V(G) ={1,2,...,n} and edge set E(G) ={ij: A;; #0,i # j},

where A;; is the ij-entry of A. On the other hand, for any given graph G, there is a
class of real symmetric matrices whose corresponding graph is G. Denote this class

as

S(G)={Ae M, (R):A=AT,G(A) = G},

where M,.,(R) is the set of n x n matrices over the field of real numbers. The
manimum rank problem is to determin_e the minimum rank over all matrices in the
set S(G) for a given graph/G., This value is .'éé,lled the minimum rank of the graph
G and is denoted by

mr(G) mm,{rank(A) W e S(G)}
|
The minimum rank preblem comeT lrofﬁ;—- a more general problem called the inverse

eigenvalue problem. It reldtes to many .topics 11} other fields. For more detail, the
motivations and the applicafions; please see thﬁa fsurveys [9; 10].

Minimum ranks of some graphs are well knox;\:fn, see a table in paper [I]. For
example, the minimum rank of an n-path is ﬁr(Pn) =n-1for n >1 and of an
n-cycle is mr(C,,) =n -2 for n > 3. Also, the minimum rank of the complete graph
K, is mr(K,) = 1 and of the complete bipartite graph K,,, is mr(K,,,) = 2 for
m+n >2 while mr(K;,) = 1.

To study the minimum rank of a graph, several related parameters are considered.

The mazimum nullity, denoted by M (G), of a graph G is defined by
M(G) = max{null(A): A e S(G)}.

It is easy to see that

mr(G) + M(G) =|V(G).

So in this article we very often write results in term of M (G) rather than mr(G).

A quite powerful concept called the zero forcing number is defined below.

Definition 1. The zero forcing process on a graph G is the color-changing process

using the following rules.



e Each vertex of GG is either black or white initially.
e If z is black and y is the only white neighbor of x, then change the color of y
to black.

A set F ¢ V(G) is called a zero forcing set if with the initial condition that the
vertices in F' are black and the remaining vertices are white, each vertex of G could
be forced into black by the zero forcing process. The zero forcing number Z(G) of

a graph G is the minimum size of a zero forcing set.

It was shown in [1] that M (G) < Z(G) for all graphs G. In fact, most of graphs
whose maximum nullity are known have the fact M(G) = Z(G). This means that
Z(G) is a sharp upper bound of M(G) in some sense. But this also means that
for those graphs such that Z(G) is not a sharp upper bound of M(G), we are less
familiar with them. .

Another related parameteriis the path colzl)ér number P(G) of a graph G, which
is the minimum number of vertex disjoint induced I;aths of G that cover all vertices
of G. It was shown in [2] fhiat P(G) < 14 (G) for all graphs G. Although in general
M(G) and P(G) are not comparable 1't;§ias shown in [14] that M (G) < P(G) if G
is outerplanar. So P(G) is a bettelir uppﬂr,. boqni_d than £ (@) for M(G) when G is

.
o T |
- !

) | 11
e sl | X B . .
In the case when G contains.cut-vettices, it"is. much easier to determine the

outerplanar. |

above parameters for G by determiting those for blocks of G. We give a vertex
reduction formula for the zero forcing number in Section [2 We establish a property
which is preserved by vertex-sum operation and hereditary for induced subgraphs
in Section 3] We then give an example for which the difference Z(G) - M (G) could
be arbitrarily large in Section [4]

There is another aspect to consider S(G) as a set of matrices whose entries are
confined to be zero, nonzero or unknown. We study the minimum rank of the set of
matrices whose entries are confined in Sections [f]and [6] With this aspect, we derive
a new upper bound of M (G) called the exhaustive zero forcing number in Sections
[0 and [}

Finally, we give a summary about upper bounds on M (G) in Section |§| We also

give an example to answer a question proposed in [§].



2 Vertex reduction for Z(G) and P(G)

For two graphs G; and G5 with a vertex labeled v on each of them, the graph G
obtained from G U Gy by identifying the vertices labeled v is called the vertex-sum
of G; and G4 at v. We write it as G = G ®, G. There is a formula to compute the

maximum nullity of the vertex-sum by that of the original graphs[f]

Theorem 1 ([4]). If G = Gy &, G, then the mazimum nullity of G is
M(G) = max{M(Gy) + M(Gs) -1, M(Gy -v) + M(Gy—v) - 1}.

There is an alternative expression for the formula in Theorem [I}in terms of null

spread defined below.

Definition 2. For any vertex vin a graph G, the null spread m,(G), the path spread
po(G), and the zero spread z,(G) of Giat-w are defined by:

mv(G) :M(G) _ M(G—’U), ;

b (O PR )
zv(GH 2(&)- 26 %)
| ' 1

- ' 11
Having this definition inmind;'the formula fin ‘Theorem [1] then can be rewritten
as '

m,(G) = max{my(Gy) +m,(G2),0} - 1

by noting that M (G —v) = M(G1 -v) + M(Gy -v). For the formula on path cover

numbers, we need the following definition.

Definition 3. A vertex v is doubly P-terminal if there is an optimal path cover such
that v is the only vertex in the path who covers v. A vertex v is simply P-terminal
if there is an optimal path cover such that v is an endpoint of the path who covers

v and v is not doubly P-terminal.

We remark that the terminologies “doubly P-terminal” and “simply P-terminal”
were originally called “doubly terminal” and “simply terminal” in [5]. The purpose
of using P-terminal is just to distinguish the concept Z-terminal defined later.

Then, the formula for path spread is as follows.

'For the result on the sum at two vertices, see [12].



Theorem 2 ([5]). If G = Gy &, G, then the path spread of G at v is

-1,
p(G) =y .
min{p,(G1),p,(G2)}, otherwise.

if v is simply P-terminal for G and Gs;

Now we use the similar language to deduce the formula for the zero forcing

number, since the zero forcing number has some properties related to induced paths.

Definition 4. A chronological list of a zero forcing set is the order of forces given
by the zero forcing process. A chain of a chronological list is a sequence of vertex
such that

U1 > Vg =+ = Ug,

where the arrows means the former changes the color of the latter.

We observe that each maximal ehidin is an-induced path. Hence we may define
=
similar properties in the sense-6f-Z.
Definition 5. A vertex vi8. doubly -Z—terminal if there is an optimal chronological
list such that v is the only vertex 1r{ ﬂhe-ma,}qmal chain who passes through v. A

vertex v is simply Z-terminalsif tlril e 1§ an of)t.lmal chronological list such that v

is an endpoint of the maxXimal C}Ia n Wh@ pasS'ps through v and v is not doubly

Z-terminal. iy S | 1

Definition 6. A reversal of azero for¢ing sct'# is the set of the last vertices of the

maximal chains of a chronological list.

It was shown in [2] that the reversal of a zero forcing set is again a zero forcing

set of the same size. In these terminologies, we may rewrite some known results.
Theorem 3 ([8]). If v is a vertex of G, then we have the following properties.

o -1<2,(G)<1.
o The vertex v is doubly Z-terminal if and only if z,(G) = 1.
o If v is simply Z-terminal, then z,(G) = 0.

In order to obtain an exact formula for the zero forcing spread on the vertex-sum,

we first need a lemma as follows.
Lemma 4. If G =G, &, Gy, then

Z(Gl) +Z(G2) -1 SZ(G) < Z(G1)+Z(G2—U).



Proof. Suppose F'is an optimal zero forcing set of G. Denote F; = FFnV(G1) and
Fy, = FnV(G,). In the corresponding chronological list, vertex v is contained in
some maximal chain

C:’Ul_>'02_>”'_>vk~

Without loss of generality, we may assume that v; € G; and v; = v. If C is lying on
V(G4) entirely, we know that Fj forces V(G1) and Fyu{v} forces V(Gs). Then we
have

Z(Gl)-l-Z(GQ) < |F1|+|F2+U| < Z(G)+1

Similarly, the inequality holds if C' is lying on V' (G5) entirely. Hence we may assume
that C'n(V(G;)-v) # @ for i = 1,2. But in this case we know that F forces V(Gy)
and Fy u {v} forces V(G2). The inequality holds again.

On the other hand, suppose 4 and F; are optimal zero forcing sets of G; and
G5 — v, respectively. Then the second inequa.ili'ty holds by the fact that Fy u F, is a

zero forcing set of G. ' O

The lemma is useful for deducir}g ‘the .f“_edﬁction formula for the zero forcing
L |

| ' !:.'-FI-F"'" l I
| .
Theorem 5. If G = G &,G9, ther

number below.

the ;!3;'0 spllr%aad of Gratw is
SN | 1
-1 . il sinllpl.y_ Z-terminal of G and Go;

2 (G) = S
@ min{z,(G1), 2s(G2) } otherwise:

Proof. 1f v is simply Z-terminal in G; and Gs, then z,(G1) = 2,(G2) = 0 by Theorem
Bl Let Fy and F; be optimal zero forcing sets of Gy and G, respectively. We may

assume that v ¢ | and v € Fy by taking a reversal of F} or Fj if necessary. Thus,

Fyu (Fy\{v}) forces V(G). Hence,
Z(G)< Z(Gy) + Z(Gy) - 1.

By Lemmald] z,(G) < min{z,(G1), 2,(G2)} -1 = -1. By Theorem|[3] 2,(G) > -1 and
so z,(G) = -1.

Now consider the case when v is not simply Z-terminal in GGy or not in G,. Sup-
pose to the contrary that z,(G) # min{z,(G1), z,(G2)}. Since G —v is disconnected

with two parts G; —v and Gy — v, we have

Z(G-v)=2(Gy-v)+ Z(Gy—v).



By Lemma [4]
20(G1) + 2(G2) = 1 < 2,(G) < min{z,(G1), 2,(G2) }.

By Theorem [3, the zero spread takes value only in {-1,0,1}. So the only possibility
is that z,(G) = -1 and z,(G1) = 2,(G2) = 0. This gives that

20(G1) + 2,(G2) = 2,(G) + 1 or equivalently Z(G1) + Z(Gs) = Z(G) + 1.
Let F' be an optimal zero forcing set of G and
C=v; »>vy ==

be the maximal chain containing v. Since z,(G) = -1, the vertex v is neither
simply Z-terminal nor doubly Z-terminal 'of .G by Theorem This means that
Cn(V(G;) -v) # @ for i = 1]2. Denete tha‘tla_Fl =FnV(Gy) and Fy, = FnV(Gs)
and assume that v; € V(G,).” Thusy F; forcesal/(G7) and Fs u {v} forces V(Gs).
Then we have the inequality ;

2G 42 K URHEL o1 - 2(6) 41,

q |
which in fact an equality, ‘and that .L" 4, FQJ{}U} akei optimal zero forcing sets of G; and
- - I
G5. This implies that vis.simiply: ZI tierminal of bc'rth Gisand G5, a contradiction. [
' |

Consequently, we have the following results for special cases.

Corollary 6. If Gy is a graph with a vertex of degree 1 labeled by v and Gy = Ps is

a path of two vertices with one vertex labeled by v, then
M(Gl @v GQ) = M(Gl)
The equality also holds when M is replaced by Z or P.

Corollary 7. If Gy is a graph with one vertex labeled by v and Gy = K14 is a star

with t > 2 and whose center is labeled by v, then

M(Gy®,Gy)=M(Gy-v)+(t-1).
The equality also holds when M is replaced by Z or P.
Corollary 8. If T is a tree, then

M(T) = P(T) = Z(T).



3 Strong PZ condition

In this section, we study the relation between path cover number and zero forcing
number. If P(G) = Z(G) for a graph G, we say that G satisfies the PZ condition.
The following examples show that the induced subgraphs of a graph G (respectively,
the vertex-sum of two graphs GG; and G3) may not satisfy the PZ condition even if

G satisfies (respectively, G; and G satisfy) the PZ condition.

Example 9. Let G be the graph in Figure[]] We know that P(G) =3 = Z(G). But
the induced subgraph K4 does not satisfy the PZ condition, since P(K4) = 2 and
Z(K,) =3.

\5 f 6

s w' . |

Figuredl: The gr;r—ﬂ__'" G 1.ﬁo'r Examplé [9)

m ||

rio W | 1
Example 10. Let G and (5 be-the graphs.in Figure 2l with some vertices labeled
v. We have P(G,) = Z(Gy) = Land P(G,) = Z(G,) =3. But the graph G = G18,G>
does not satisfy the PZ condition, since P(G) =3 and Z(G) = 4.

: N

Gy G G1®, Gy

Figure 2: The vertex-sum G; & G5 of graphs G; and G, for Example

This shows that even if the reduction formulae of P and Z are almost the same,
they may take different values in vertex-sum operation. So we introduce a stronger
condition such that it is hereditary for induced subgraphs and preserved in vertex-

sum operation.



Definition 7. For a graph G, if any path cover of GG is a set of maximal chains for

some zero forcing set, we say that G satisfies the strong PZ condition.

It is easy to see that the strong PZ condition implies that P(G) > Z(G). And
we know that P(G) < Z(GQ) for all graphs G. Hence the strong PZ condition implies
the PZ condition. The graph G in Example [J] also provides an example for which

the strong PZ condition is really stronger than the PZ condition since the path cover

{{1},{2,3,4},{5,6}}

could not be a set of maximal chains for any zero forcing set.

Also, if H is an induced subgraph of G, each path cover of H is a subset of some
path cover of G. If G satisfies the strong PZ condition, then that path cover of G is
a set of maximal chains for some zero forcing set of G. Thus, the restriction of this
set of maximal chains on V/(H) is a set of m.'ziXimal chains for some zero forcing set
of H. Hence, if G satisfies the strong PZ condition; then all its induced subgraphs
also satisfy the strong PZ-eondition™, .

The following theorem shows tHéE’E fﬁlé"strong PZ condition holds for graphs

composited by smaller graphs satls[meg J;(he strqng PZ condition.

Theorem 11. The Uertex—sum of {wo gmphs sqtqsfyzng the strong PZ condition also
satisfies the strong PZ condztzon :

Proof. Let G = G1 @, Gy and ® be a path cover of G. We have that v is a vertex in
some path P € ®. Denote

P=v-vy—- =1y

and v = v;. If all vertices of P falls in V(G;), define ®; to be the set of those paths in
(G1 and @, to be the set containing those paths in GG3 —v and the one-vertex path v.
By the definition of strong PZ condition, ®; and ®5 are the sets of maximal chains
for some zero forcing set Fy and Fy of G; and Gy, respectively. So, & = &1 U (P -v)
is the set of maximal chains for the zero forcing set Fy u (F; —v) of G. Similarly, it
works for the case when all vertices of P fall in V(Gy).

Now we may assume that the path P contains vertices in G; — v and vertices in
G5—v. Define ®; to be the set of paths entirely lying in GG; and the path vy —vy—---—v;,
and ®5 to be the set of paths entirely lying in G5 and the path v; —v;,1 — -+ — vg.
Similarly, ®; and ®, are the sets of maximal chains for some zero forcing sets F; and

F, of Gy and G, respectively. Take the reversal if it is necessary. We may assume



that vy € F} and v; € F,. Thus, ® is a set of maximal chains for the zero forcing set

Fyu (Fy—v) of G. This completes the proof of the theorem. H

Since the n-cycle C,, and the 2-path P, satisfy the strong PZ condition, we have
the following corollary. Recall that a cactus is a graph and each of its blocks is a

cycle or a K.

Corollary 12. Every cactus G satisfies the strong PZ condition and so P(G) =
Z(G).

4 Graphs with large Z(G) - M (G)

Although the path cover number and the zero forcing number is always the same
for cactuses. Usually the zero forcing number and the maximum nullity may not be

the same for cactuses.

Example 13. The cactus.H; in“Figure |3 is called a_5-sun. Notice that P(G) =
Z(G) =3 but M(G) =2. \ilvd :

Figure 3: The 5-sun Hj.

In fact, the difference Z(G) — M(G) could be arbitrarily large.

Example 14. The graph in Figure [4] is called a sequence of 5-suns [5, Fig. 8.].
Denote the sequence of k 5-suns by Gy. It was shown that P(Gy) - M(Gy) = k.
By Theorem [12] Z — M could be arbitrarily large. More precisely, we may compute

those parameters of GG, by using the reduction formulae to get
Z(Gk) = P(Gk) =2k + 1, M(Gk) =k+1.
We may modify these graphs to get further results.

Theorem 15. For any integers p and q with 1 <p < q<2p-1, there is a graph G
such that M(G) =p and Z(G) =q.



Figure 4: A sequence of k 5-suns Gj.

Proof. 1f p =1, then ¢ = 1 and so we may choose G = K; as M(K;) = Z(K;) = 1.
We now assume p > 2. If ¢ = 2p— 1, then we choose G to be a sequence of (p—1)
5-sun G,1 as M(Gp_1) =p and Z(Gp-1) =2p—1 = q. For the case when ¢ < 2p -2,
let k=q-pandt=2p-gq. Pick a vertex u of degree 1 in G. Suppose G is the
graph obtained from Gy by adding a leaf v adjacent to u. Also label the center of a
star K+ by v. Since t > 2, =

M(G) ®, Kit).= M(G}) + (t - 1) =M(G)) +t=1=k+t=p

2(Gy o, K1) = 2(C) {Tt) € () #t — 152k + 1 = g,

| -t |
by Lemmas [0] and [7] | i - O
We close this section by the fo]!lowiné p.robllefin.
: ) !

Question 16. Does the inequzilify
Z(G)<2M(G) -1

hold for any graph G?

5 Minimum rank of a pattern matrix

We now consider a more general setting for studying the minimum rank of a graph

as described below.

Definition 8. The sign set S is the set {0, *,u}. We say a real number r matches
DeSifr=0eR, xeSifr+0eR, and u if r matches 0 € S or » € S. A pattern

matriz is a matrix whose entries are elements in S| We say that one matrix A over

2The “zero-nonzero pattern matrix” defined in Section @] is a special case of pattern matrices
here since the element u € S is allowed in a pattern matrix. So in this thesis, a pattern matrix,

without additional description, means the latter one.

10



real number is of pattern of a pattern matrix @), denoted by A = (), if they have the
same size and each entry in A matches the corresponding entry in ). The minimun
rank of a pattern matrix ) is written as mr(Q)) and defined by the smallest rank

attained by those matrices A with A = Q.
We now see an example for the minimum rank of a pattern matrix.

Example 17. Let

be a pattern matrix. We observe that the first row and the second row must be

linearly independent for any matrix A with A ~ Q. So, mr(Q) = 2.

Next, we shall view the rows ofja pattern matrix as a “vector” with entries in S.
To realize the concept of rank for a patltern matrix, we give the following definitions
by simulating the concepts on realfvector spaces, =

Definition 9. In the sign set' S = {OT:;"LL}, Ii:'hgl'addition' “4” and the multiplication
‘T Wy |

“x” are defined as follows. I ;'_,'..._“ | |
| J[:S 15 - §]
| L0 ol
M
OufgO B 00
* * U U
A
x:{0,*} xS > 8
x |0 * u
0/0 00
|10 * wu
The sign space of dimension n is S™ = {(x1,29,...,2,):x; € S} with entry-wise

addition and scalar multiplication. The elements in S™ are called sign vectors.

Notice that the sign space is neither a vector space, a module, nor a matroid.
But it still has the distributive law. Since we did not define the multiplication of
two scalars, the commutative and the associative laws make no senses. Also, the set

has no identity and hence no inverse element for each element.

11



Definition 10. We say a sign vector v ~ 0 if the entries of v contains no *. That
is, they could only be 0 or u. A finite set of sign vectors {vy,vs,...,v,} is linearly

independent (in the sense of sign pattern) if
C1U1 + CoUg + +++ + Cp U, ~ 0,
where ¢; are scalars in {0, *}, implies
cp=cyg=-=c¢,=0.

The rank of a set of sign vectors is the maximum cardinality of a independent subset.
The rank of a pattern matrix is the rank of the set of row vectors of the pattern

matrix.

The next lemma shows the relation between the linear independence in the sense

of sign pattern and that inthe sense of vector Space.

Lemma 18. Suppose V. = {wy, ug,-" vn} is a set ofszgn vectors, and W = {wy,ws, ..., w,}
is a set of sign vectors such that wl .-ﬁ* 'obtaimed from v, by replacing entries u by 0
or x. If V' is linearly independent, 't ew |

Suppose R = {ri,r9y. e, Tnf 05 Ja et dLreal ,chtors such that each entry in each
vector matches the corresponding niry m. elemeﬁzts ofW If W is linearly indepen-

dent, then R is linearly mdependent1 as real veclltons

Proof. To show the first part, it’s endugh to show that
CLWy + CoWsg + +++ + cpwy, ~ 0
implies
C1U1 + CoUg + -+ + ¢ U, ~ 0.

Since the addition and the scalar multiplication is entry-wise. We only need to prove
the case of dimension 1. If v; = u for some ¢, by the hypothesis we know that w, is
0 or . If ¢, =0, then c;v; = cywy = 0 and so there is no difference between Y ¢;v; and
Y cw;. If ¢ = %, then Y ¢;v; = u ~ 0, since ¢ = u.

For the second part, similarly it’s enough to show that
1Ty + Corg + -+ 1y, = 0

implies

ciwy + chwsg + -+ + ¢ wy, ~ 0,

12



where ¢/ =0e Sif¢;=0eR and ¢, =+ €S if ¢; # 0 € R. Again, we only consider
the case of dimension 1. First, if ¢;r; = 0 for all 4, then clw; = 0 for all ¢ and hence
Y clw; =0~ 0. Second, it’s impossible that {¢;r;}; contains only one nonzero term.
So we may assume that c,rs and ¢;7; are nonzero for some index s and t. This means
that ¢, ¢, 7s and r; are not zero and hence ¢, = ¢, = ¥ and w, = w; = *. Hence we
have ) cw; = u ~ 0 since

Chws + Ciwy = * + % = .

O

Theorem 19. If Q) is a pattern matrix and U s the set of all pattern matrices

obtained from @) by replacing u by 0 or *, then

rank(Q) < énrig{rank.(Q')} <mr(Q).

Proof. This is the instant, result_of Lemmat{isfand the definition of rank. n

The integer mingg{rank(€")} is.called the erhatstive rank of @, denoted by
erank(Q). A !

| i
6 Rank of pattern r'p‘atrix vs zero'forcing number
riom Wy | 1
. ) !
The concept rank of a pattern‘matrix maybe is a:little bit abstract. However, by
defining a general zero forcing process, we can get an interpretation of the rank of

a pattern matrix.

Definition 11. Suppose G = (V, E) is a graph and B is a subset of E called the set
of banned edges or the banned set for short. The zero forcing process on a graph G

banned by B is the coloring process by following rules.

e Each vertex of GG is either black or white initially.
e If x is a black vertex and y is the only white neighbor of x and zy ¢ B, then
change the color of y to black.

If F'is a subset of V and by using F' as the initial set of black vertices we can
change all vertices of GG to black by the zero forcing process banned by B, then F' is
called a zero forcing set of G banned by B. The zero forcing number of G banned by
B is denoted by Z(G, B) and defined by the minimum cardinality of a zero forcing
set F' banned by B.

13



Let W be a subset of V. A subset F'c V is a zero forcing set banned by B with
support W means that F' is a zero forcing set banned by B and W ¢ F'. The zero
forcing number of G banned by B with support W is the minimum cardinality of F
such that F' is a zero forcing set banned by B with support W. This number is
denoted by Zw (G, B).

It’s clear that if B and W are the empty set, then the process has no difference
with the original zero forcing process.

Now with this definition, for any m x n pattern matrix ) we can construct a
graph and a set of banned edges such that the zero forcing number of the graph is
the value m + n —rank(Q). For ), consider the bipartite G = (X uY, F) with

X = {al,ag, . ,am}, Y = {bl,bg, = .,bn}, FE = {aiijQij * O}
Also let the set of banned edges.to be £

o '_{alb QU u}
We then have the following relation be@_ thq rank and the zero forcing number.

Theorem 20. For a given-mxn pa{tem'rtﬁatrihcf@, If G=(XUY,FE) and B are the
graph and the set of banned, edges ¢ﬁned abom |then

rank(Q)+Zy(G B)= 4.

Proof. Denote [m] for the set {1,2,...,m}. Let {v;}[m) be the rows of Q). For any
I ¢ [m], we want to show that {v;};; is independent if and only if Y U {a; }ie[m)\s is
a zero forcing set banned by B with support Y.

For the sufficiency, suppose Y U{a;}icfm\r is a zero forcing set banned by B using
{a;}ier as the initial set of white vertices. Suppose as € X is the first white vertex
who was changed color into black by some vertex b; € Y. Then a, is the only white
neighbor of b; and asb; ¢ B. This means that among all the vectors in {v;};s, the
sign vector v is the only one whose ¢-th entry is * and all other vectors have their

t-th entries zero. So, if

Z C;u; ~ O,

i€l
then c; must be zero otherwise the ¢-th entry of that sum would be *. Since every

white vertex will be changed into black, every ¢; is forced to be zero.

14



For the necessity, suppose {v;};; is independent. Initially, set all vertices in
{a;}ier to be white and others to be black. Write these vectors and the hypothesis

of independence as

v; = (Ti1, Tigy - -+ Tin)
and
Z Cilij ~ 0,
iel
for all j =0,1,...,n. Now, if for every j the set {x;;}ies contains u or two more

+ or all the elements are zero, then ¢; = * for all ¢ € I is a nontrivial solution and
thus the set is not independent. So there must exist an integer ¢ such that {x }ics
contains exactly one *, say x4 = %, and all other elements are zero. This means b,
has only one white neighbor a, and asb; ¢ B. So we can force as to be black. Doing

this inductively, every white vertex will be forced into black. O]
=

Example 21. We already know-that the ranksof=.-

" |
is 2. The graph described by '@ is X~ven fﬂlFigm!fe with-Zy(G, B) = 3 and
= || -

ran’l.{'(Q)l 4 llZy(G, B) =~ éf) :m +'-n'

Figure 5: The graph G described by a pattern Q.

The proof indicates some reasons for the name “zero forcing” process since the
process forces the coefficients to be zero one by one.

On the other hand, if we call the rank we defined above the “row rank” and the
number of maximum independent column sign vectors the “column rank”. Are the
two values the same just as that in general vector spaces? The answer is yes. And

we can prove it in language of graph theory.

15



Theorem 22. With the same condition in Theorem[20, we have
ZY(G7 B) = ZX(G7 B)

Proof. Since the reversalP| of a zero forcing set is also a zero forcing set, we know

the two values are the same. O

Combining Theorems [20] and 22}, we know that the “row rank” will always equal

to the “column rank” in any pattern matrix.

7 Exhaustive zero forcing number of graphs

By Theorem there is some parameter between the rank and the minimum rank
of a pattern matrix. We can use:this tool to givé a better bound for the maximum
nullity of a graph. Here is a simple example-:

Example 23. The corresponding pattern matrix of the-3-path Pj is

i

F oo # * (D

0--* u.

1 |
Since there is one more condltlon symmetry, in 'the minimum rank problem,
mr(Ps) > mr(Q) > erank(Q) > rank(Q).

And all the values of those parameter are 2 here.

Just as in the example, for a graph G = (V, E') we have a corresponding pattern
matrix () with
u, if i=y;
Qij=Qji=1 *, ifi+jijek;
0, ife+7j,05¢FE.

This gives an instant proposition.

Proposition 24. If G is a graph and Q) is the corresponding pattern matriz, then

mr(G) > mr(Q) > erank(Q) > rank(Q).

3 Although our zero forcing process is different from the general process, those banned edges

will not disturb the proof in paper [2] Theorem 2.6].
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Furthermore, let U be the set of pattern matrices obtained from @ by replacing
the entries equal to u by 0 or *. So, the set U contains 2" pattern matrices, where
n is the number of vertices of G. Let [n] = {1,2,...n} and I be a subset of [n].

Construct a family of bipartite graphs G corresponding to elements in U with
vertex set V(é;) = X uY, where X ={aj,as,...,a,} and Y = {by,bs,...,b,},

and edge set E(G;) = {ab;:i % j,ij € E(G)}u{a;biiel}.

By the arguments of the last two sections,
erank(Q) + I]H.Ei}]{ Zy(Gp) =2n

and

rank(Q) + _Zy(é[nJ, B)=2n,

=
where the set of banned edges B:is {absi € [mf}. Herice we can change the minimum

rank problem into the maximum nullity problem and get

M(G) < imax Z (GRS Zy (G, B) =n.
Ic[n] | -l"’l.'-"" I|

We call the second term in_the ineh\‘xalitﬂa]aove ;-the exhaustive zero forcing number

and denote it by Z(G). ; ! , g | |
=3 : it

Example 25. Let Q be the pattern matrix given bi}:graph P3. To find the exhaustive
zero forcing number of (), we need eompute the zero forcing number of the 8 graphs

in Figure |§| The number written below a graph is the number Zy (G).

Now we have three upper bounds Z(G), Z(G) and Zy (G, B) —n for maximum

nullity of a graph. To compare these bounds, we give the following theorem.

Theorem 26. For a graph G, let é[n] and B be the graph and the set of banned
edges defined above. Then, J ¢ [n] =V(G) is a zero forcing set of G if and only if
Y u{a;}ics is a zero forcing set of é[n] banned by B. Consequently,

M(G) < Z(G) < Z(G).

Proof. Observe that v; forces v; in the chronological list on G if and only if b; forces
a; in the chronological list on G,j. So the theorem comes from the fact that they

follow the corresponding chronological list. ]
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Figure 6: The 8 graphs used in computing exhaustive zero forcing number.

Thus we know that Z(G)lis a bétter upplér bound than Z(G) for M(G). Fur-
thermore, by Theorem [26 m if M(G)='Z(G) then Z((G) also takes that same value.

Finally, we count the exhaustlve zero forcmg number of a n-sun H, with n odd
to show that Z(G) and Z (G) may| bpﬂswlyrdfferent kometiies. The value Z (H,)
and M (H,) used in the theorem crl[iesﬂﬂfn' gaper [4] and the fact P(G) < Z(G).

Theorem 27. If H, is the graph obtained fmﬁm the n-cijcle C,, by adding a leaf to

each vertex on C,, then ) ll || ]
] 2, ifn=3
A - "
|5 ifn>3.
Proof. We already have that
M(Hs) = Z(Hs) =2

and

M(H,) = Z(H,) = 5 =15

when 7 is even. So, by the inequality in Theorem [26] the statement is true for these

two cases. We then only need to show that
~ n
when n is odd and n > 5. However, since in this case we already have
n ~ n
it’s enough to show that Z(H,) # [2].

18



For brevity, we write G = H,. We label the vertices on the subgraph C,
hi,ha, ... hy, counterclockwise, and the leaf adjacent to h; by hl. Set I be a sub-
set of

1.2,....n, 1.2 ....n
{7’ 1 ) ) )

and
I'=In{l,2,...,n"}.

Now for any fixed I, we want to show that Zy(G;) - n < [5] by constructing a
zero forcing set with cardinality less than that number. Similarly we write the
corresponding vertices in X as a; and a;, while the corresponding vertices in Y as

b; and b;. And we have the following coloring rules.

1. b} forces a; if ' ¢ I’ or a; is black.

2. b; forces a1 if a;-1, a;,.and o ave blaclkf]
3. bl forces a; if a; is black .dnd ‘€T’ I
4. Bach a] will be forced-if each a; is black;.

1 i
L ]

Now we consider two cases. ’ﬁ',;"i': v ~'| |
I *FI-.I |
Case 1. If I' = {14, 2/,.. ’}l henl we takq Y w{a),al} as a zero forcing set.
First a; and ay are foreced” by rule 1. Secdnd 93 isiforcéd by rule 2. Finally aj is

forced by rule 3 and then a7is forde<ii by nule 2 ﬁtam Continuing the final step and
each a; will be forced and then’ we can, use rulg 458

Case 2. If I' # {1/,2,... ,n'}, then I’ can be partitioned into several intervals in
view of circle, say Tj. Let I be the set consisting of each a such that ¢’ is the first
element in each Ty in the order of 1/,2,... ,n’, 1. We say Y U F' is a zero forcing set.
Without loss of generality we may assume 7T; begin by 1’. First a; and each vertex
a; will be forced if ¢" ¢ I by rule 1. Second ay will be forced by rule 2. Finally a)
is forced by rule 3 and then a3 is forced by rule 2 again. Continuing the final step
and each a; with ¢/ € T7 will be forced. Also doing this process to each T}, then each
vertex a; will be forced and then we can use rule 4.

In the Case 2 we know that & has value at most |%]. So,

n

Z(H,) < max{2.| 7]} = |5

since n > 5. This completes the proof of the theorem. n

40ur addition takes modulus of n.
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The fact that the exhaustive zero forcing number is better than the zero forcing
number is a little bit surprising. It is natural that an unknown element u could be
zero or nonzero. But it is surprising that when we consider all cases that v might
be, the bound is strictly sharper. The reason is that we give too much possibility
when we use the element u. We might see the detail in graphs. Suppose ¢ and j are
two vertices in a graph G. When ¢ and j are adjacent, we might force j by ¢ but this
may simultaneously increase the number of the white neighbors of . When ¢ and
j are not adjacent, although we cannot force j by i, the number of white neighbors
of i is relatively small. So in general the two value Z(G) and Z(G - e) are not
comparable. However, a banned edge take both the disadvantages of an edge and a

non-edge. So no matter ¢ and j are adjacent or not, we must have

Z(GyB)< Z(G'+e, By e),
. =
where e = 1.

Now with this new parameter, the question i, could the equality Z(G) = M(G)

holds for all cactus graph G7 The followmg exlample glves a negative answer.

....l— i

Example 28. Let G be the grap}} ﬁl&ure m | Wedhave M(G) = 2. But by some
J 5} Wq have Z(G) = 3.

computation and by setting I'= {ll,

Figure 7: A graph G for Example 28

8 Sieving process

In most of time, the computation of the exhaustive zero forcing number is tedious.

For example, to determine the value Z (G) for some graph G with n vertices, the
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maximum in the definition should run over 2" cases. It increases rapidly. However,

we may rewrite the definition as
Z(G) = gnfn](Zy(éz) -n =max{k:k = Zy(G;) - n for some I}.

So, for each integer k, we may define Zy, or Z;(G) if it is necessary to mention the

graph, to be the set of possible indices such that
Zy(Gr)-n>k.
Again we may rewrite the value as
Z(G) = max{k:T; + @}.

On the other hand, to determine-whether [ is in 7, or not, we should check that
each subset F' 2 Y with size n+ k =1 'canno'i;.-force V(G;). Suppose now F 2Y is
a subset with size n + k=1. Thus'we get a setuof candidates for 7. That is, the
set F' cannot force V(G ) For those.candidates I. So“each subset F'2Y with size
n+k —1 is like a sieve who only allOws..-thosq candidates to pass. And the set Zj
is the remaining set after all indices WEEPéTfed by each ' 2Y with size n+k - 1.

Hence we call this processthe sieving proeess. | |

Example 29. Label the Verjci'ces_cl)fia 5-giim. /1 i:n__:_Figure B We already know that
M(Hs) =2 but Z(Hs) = 3. S0 tle dhiaustivezero foreing number could only be 2
or 3. So we want to say Z(Hs) = 2 directly by showing that Zs is empty. We pick

F= {a5,a7} uY

as the first sieve. We know that, no matter what the index I was chosen, b5, b; can
force ag,as. Then bg, by can force a4, aig. If now 9 € I, then by can force ag. Thus
all the vertices would be forced into black. Hence we know that 9 ¢ I. Furthermore,
by automorphisms of Hs, we know that 1,3,5,7,9 cannot be elements in [ if [ € Z3.
This consequence already leaves 2° possible indices. On the other hand, observe
that if 1 ¢ I, then b; can force as. This will also make all vertices black. So we must
have 1 € I. Combining 1 € [ and 1 ¢ I, we know that Z3 is empty just by only one

sieve.

Example 30. Let Gy, be the sequence of k 5-suns in Example[I4] Label the vertices
of Gy as that in Figure @ We would like to show that Z(G}) is no greater than
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Figure 8: A 5-sun Hj with labeled vertices.

k + 1 by the sieving process. If I is an index set, we focus on whether i(5) is an

element in I or not and sieve every possibilities to show that Z.»(Gy) is empty. Let
F =Y initially. If 1(5) € I, add a1y and ay(2) into F. If 1(5) ¢ I, add ay(2) and ay(s)
into F'. For other i =2,3,...,k, add agy-into [ if i(5) € I while add a,s) into F if
i(5) ¢ I. Thus the cardinality of F\¥#is k #1&- Andfor a given index I, it will be
sieved by the corresponding F:+So the'set Ik;(Gk) is empty. Hence Z(Gk) <k+1.
With the addition that M(G' )&=k 1, the bound Z(Gk) is sharp.

i
J

Figure 9: A sequence of k 5-sun G}, with labeled vertices.

The sieving process not only gives a better way to determine the value of the
exhaustive zero forcing number, but also gives some further information. Now denote
@ to be the pattern matrix given by the graph G while Q)7 to be the pattern matrix
given by the bipartite graph Gr. Clearly, (); is a pattern matrix obtained from @) by
replacing some u’s with some *’s and 0’s. Suppose now k is a given integer and A
is a given real matrix such that A is of pattern of Q. By Theorem [20] the nullity of
A is less than k if A is of pattern of Q); for I ¢ Z,,. Or equivalently, if a matrix A of
pattern of () has its nullity greater than or equal to k, then A must be of pattern Q;
for some I € 7). Especially, if now k = M(G), the matrix attaining this maximum
value £ must has the pattern of (); for some I € Z,. This can give some clues on

how to find this matrix A.
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Example 31. Label the vertices of the bipartite graph G = K 3 in Figure We
know that M(G) = Z(G) =2. To find the set I, we may pick

F={a}uY

as the first sieve. Similarly, no matter what the index I was chosen, b; can force
as. Now if 3 € I, then b3 can force as. Thus all vertices will become black. Hence
we have 3 ¢ [ for all I € Z,. Also, by automorphisms of K3, we know that 1,3,4

cannot be elements in I. Thus,

I, = {{2}, 2}
This means that if A is a matrix with nullity 2 such that G(A) = K3, the

1i-entry, ¢ = 1, 3,4, must be zero.

L

Figure 10: A bipartite grﬁf—fﬁl,? with labeled vertices.

fo|l

=
- T

|
Example 32. Let G = K333 be tLe@ complete .%’:a.lpartite K33 3 with labeled vertices
in Figure It is easy to compute Z{(G) =7, _Buf ‘amazingly, the only index set in
Z:(@) is the empty set. Let

F= {03, Q4,05, g, A7, as} uY

be the first sieve and [ is an index set in Z;(G). Independent of I, by can force aq.
If 1 is an element in I, then b; can force a;. Thus by can force as and all vertices
are forced. Hence 1 cannot be an element in /. By automorphisms of K333, we get
() - (o).

However, although Z(G) = 7, it is known that M (Kss3) = 6 in [6]. Here we
give another view of this fact. If a matrix A in S(G) attains the nullity 7, then the
diagonal entries of A must be zero since Z;(G) = {@}. Thus by multiplying some

scalar to corresponding columns and rows simultaneously we may write A as the

form
o J J
A=|J O BT|,
J B O
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where O is the zero matrix and J is the matrix whose entries are all 1 with appro-

priate size. Do the column and row operations simultaneously, the matrix

o J O
J O BT
O B -B-BT

also has the nullity 7. To attain the nullity 7, the block —B — BT must be a zero
matrix. This means B is symmetric. Since B is a matrix without zero entries and

the characteristic of the field of real numbers is not 2, this kind of B does not exist.

Hence M(G) < 6. And the matrix

O J J
ds1 6
I J 0

attains this nullity.

Figure 11: The complete 3-partite /533 with labeled vertices.

As what we did in Example for some fixed integer k, we may find some
vertices who cannot be elements in I for all [ in Z,. These vertices give those
matrices who attained the nullity k& a special pattern. It would be a good tool for

us to get a better upper bound for the maximum nullity.

Definition 12. Let ¢ be a vertex of a graph . The vertex ¢ is a zero-vertex in
T(G) if i is not an element in [ for all [ € Z,(G). And it is a nonzero-vertex in

Z.(G) if 7 is always an element in [ for all [ € Z;(G).

By doing some sieving processes, zero-vertices or nonzero-vertices appear in many
graphs. For the complete graph K, every vertex is a nonzero-vertex in Z,, 1 (K,) if
n > 2 and the vertex in K7 is a zero-vertex in Z;(K;). For the complete bipartite

K, with ¢t > 2, each leaf is a zero-vertex in Z; ;(K;,). And for those complete
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multi-partite graphs G with two more parts and three more vertices in each part,
every vertex is a zero-vertex in Z, o(G), where n is the number of vertices of G.
Finally, for the 5-sun Hj in Figure 3], each leaf is a zero-vertex and a nonzero-vertex
in Z3(Hs) simultaneously. This means that Z3( Hs) is empty and the exhaustive zero
forcing number is no greater than 2.

The advantage of a nonzero-vertex is that we may do the Gaussian elimination

on the matrix who attains the considered nullity.

Theorem 33 (Nonzero Elimination Lemma). For a graph G, suppose i is a nonzero-
vertex in Iy(G) and n;(G) denote the set of those graphs obtained from G by the

following rules:

e the vertex v should be deleted;
e for any neighbors x andy of i, th_e paitswy should be an edge if vy ¢ E(G) and
could be an edge or.a non=edge z'f.xy € LIE’(G) ;

If the nullity k is achievable.by some- matmx n, S(G) then

H< maxﬂM@—jﬁ-{ € m(G)}

Proof. Let A be a matrix in S(G)| | Ltalmn:g thf, |nulhty k' We may assume that 7 is
the first vertex 1. Since 1 isfa noriz{aro vertex rp| Ik(G) the 11-entry of A must be
nonzero. Assume the 11-entry, is: 1 by_multlplymg somle scale to A without change
the pattern and the nullity of A. Aléo, by seme permutation we may assume the

matrix A is of the form

1 a 0
a Zn A\n )
0 Ay Ay

where a is a vector whose coordinates are all nonzero. By doing row operations and

column operations, we may get the new matrix

1 0 0
0 By Ap
0 Ay Ay

with the same nullity &, where

Bll =A-aa’.
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Since aa’ is a square matrix with all entries nonzero, the entries of §11 is nonzero
if they are zero in ;1\11 and unknown otherwise. Let B be the matrix

Bn Ay

Ay Ay
Then we have the inequality

k=null(A) =null(B) < M(H),
for some H in n;(H). Hence
k<max{M(H):H en;(G)}.
O

Example 34. Let G be the graphlin Figure {7, In Example we know that
M(G) = 2 but Z(G) = Z(G)'= 3. Here givé.asome reasons to it. First we observe
that the vertex 1 is a nonzero-vertex in Z3(G) by {olowing arguments. We may pick
the set " —~ ~ '
R Adpadf vy
| T | |

as the first sieve. Then b, andub; iijceﬁl;d I|aB inach I. And consecutively, ag,
ag, az, and a1 are forced into blagk. Inzthis sytpatlon if-1 is not an element in I,
then by can force ay, then bsiforces 41 Thus alf xl'ertlces would be forced into black.
This means 1 is a nonzero-vertéxiin I3(G). Tn thls case, the graph G -1 is the only
graph in the set ;(G). By applying Theorem , if the nullity 3 is achievable, then

we get
3<M(G-1)<Z(G-1)=2.
This is a contradiction. So no matrix in S(G) has nullity 3 and thus M(G) < 2.

The bound is sharp now.

Example 35. Let G be the graph in Figure . In Example 2.11 of paper [2], it
was shown that M(G) = P(G) =3 and Z(G) = 4. The upper bound 3 could also be
given by Theorem The vertex 1 is a nonzero-vertex in Z;(G) by the sieve

F= {an, a2, a3} uY.

Let e be the edge adjoining vertex 2 and vertex 3 in GG. Then the set 7;(G) contains
only two graphs G -1 and G -1 -e. If the nullity 4 is achievable, then by Theorem

33
4<max{M(G-1),M(G-1-¢)} <max{Z(G-1),Z(G-1-¢e)} =3.

26



This is a contradiction. Hence no matrix in S(G) achieves the nullity 4. This means

M(G) < 3.

Figure 12: The pinwheel on 12 vertices.

On the other hand, there is still some work we can do on those zero-vertices. If

a matrix is of the pattern S [ oy
then the matrix must be ifyer ust be of the pattern
ey Y e

< |

i . =

g 9

= - :.11“,;-.’ I~

Thus the similar work c.ouldJa > 0N & ZEero=V ""'

Theorem 36 (Zero Ehmln&uof::friemmaﬁoha %ph"’(} suppose i is a zero-vertex

in Ii,(G) and j is a neighbor of*'i I,.Let epege .I'
Ni={v+#jiive E(G)}, No={v+ijuve E(G),iv¢ E(G)}.

And 1,-;(G) denote the set of those graphs obtained from G by the following rules

e the vertex 1 and j should be deleted;
e for x € Ny and y € No, the pair xy should be an edge if xy ¢ E(G) and could

be an edge or a non-edge if xy € E(G);
e for x and y in Ny, the pair xy could be an edge or a non-edge

If the nullity k is achievable by some matriz in S(G), then

k <max{M(H):H en;-;(G)}.
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Proof. Let A be a matrix in S(G) attaining the nullity k. We may assume that i is
the first vertex 1. Since 1 is a zero-vertex in Z;(G), the 11-entry of A must be zero.
By some permutation we may assume the matrix A is of the form

a a O

a A\ll 1’4\12 )

O Ay Ay
where « is a 2 x 2 matrix of the pattern

0 =

* U

and a is a two-column matrix with none of its row vector to be a zero vector. Then

the matrix S o ST o
4. e 4 0
A ,J{__ 1 2 N
-:_?xl P A21 =0 -"-:-
&Y Qp e 8
has the same nullity k; where ,"'"1\— Q \ - B
o . - . '-"'l-
Pt i ]
- e i
The fact that the 11-entry gt{hth%?'inatrix a~! exist and is

of the pattern - N

Let B be the matrix

1

Observe the zy-entry of the matrix aa~ta" is zero if x and y are in Ns, is nonzero if

x is in N7 and y is in N, and is unknown if x and y are all in N;. Thus the graph
G(B) must be a graph in 7,,;(G).

Then we have the inequality
k=null(A) =null(B) < M(H),
for some H in 7, ;(H). Hence

k <max{M(H):H en;-;(G)}.

28



Example 37. Let G be the left graph in Figure [13| called semimoth. The graph G
is outerplanar. By some discussions, we have P(G) = Z(G) = 5. But we would like
to show that M (G) <4 in three ways.

First observe that the vertex 1 is a zero-vertex in Zs(G) by the sieve
F ={as,a9,a13,a14} VY.
To apply Theorem [36|on vertices 1 — 2, we have
Ny ={3}, Ny ={7,13,15}.

Hence the right graph H in Figure [13|is the only graph in 7;_.5(G). The zero forcing
number of the graph H is less than or equal to 4 since {9, 10,12,15} is a zero forcing
set. If the nullity 5 is achievable, by ‘Theorem we get the contradiction

5K Z(HY <4, -,

Hence M(G) < 4.

10

12
11

Figure 13: The semimoth G"and the set 7;_,(G) for Example [37]

Second observe that the vertex 1 is also a nonzero-vertex in Z5(G) by the sieve

F= {a97a10;a127a15}'

And the set 7;(G) is shown in Figure[14 The left one has zero forcing number less
than 4 since {8,9,13,14} is a zero forcing set; while the right one has maximum
nullity 4 by the reduction formula in Theorem [T} If the nullity 5 is achievable, by
Theorem we get the contradiction 5 < 4. Hence M(G) < 4.

Finally, since the vertex 1 is a zero-vertex and a nonzero-vertex in Zs(G) simul-

taneously. We know that Z(G) < 4. Therefore we get M(G) < 4 again.

Example 38. Let G be the graph in Figure (15, By some intricate discussions, we
have P(G) =5 and hence Z(G) = 5. Also, we have Z(G) = 5 since the maximum is
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10 15

12 17

11 16
m(G)

Figure 14: The set 1;(G) for Example [37]

attained by the index set I = V(G). However, we would like to illustrate the fact
M(G) < 4.

Obseve that the vertex 1 is a nonzero-vertex in Z5;(G) by the sieve

4 —
il S - -

7= \as; ag, Gz, @1ay VY.
i' . } e
JF 3 e
Furthermore, the semimoth 1 - amplq@'is_ the only graph in 7, (G).
Al F =

{_:%_ntioﬂé'

Since we already know th.'ewmaf nullity o 1m2§b-i§ less than or equal to 4,
we get the contradictiQ:ITl. 5:';3.:";4 y 'L ifithe nI‘lLty 5 ) is achievable. Thus we
know M(G) < 4. =i ' 2
L L ]
Pl o
= o
3, rd Gy, e
= x‘ﬁ :\.

Figure 15: The graph G for Example

These elucidate that we may use Theorems|33|and [36|to get some contradictions.
And sometimes we may use them not exactly once. In conclusion, the sieving process
help us find the pattern of those matrices with large nullity. And by doing Gaussian
elimination, we may get a better upper bound sometimes.

We end this section by the following corollaries.

Corollary 39 (Simple Elimination Lemma). If i is a vertex of a graph G and j is

a neighbor of i, then

M(G) <max{M(H): H e n;(G) un;;(G)}.

30



Proof. Since the di-entry of a matrix in S(G) attained the nullity M (G) could only
be zero or nonzero, the inequality holds by Theorems [33] and [36] O]

Corollary 40 (Double Zero Elimination Lemma). For a graph G, suppose i and j

are zero-vertices in I,(G) and j is a neighbor of i. Let
Ny ={v+#jive E(G),ju ¢ E(G)}, Na={v#i:juve E(G),iv¢ E(G)}

and N3 = {v:iv e E(G),jv e E(G)}.

Also, let Ny be the subset of N3 containing zero-vertices in I,(G) and n;_;(G) denote
the set of those graphs obtained from G by the following rules:

e the vertex i and j should be deleted;

e for x andy in Ny u Nyu N3 such that x and y are not both in Ny, Ns, or Nj,
the pair xy should be an edge if wy ¢ E(&) and could be an edge or a non-edge
if vy € E(G); ~

e for x and y in N3, the pair Yy could be an edge 0L+ non-edge.

If the nullity k is achievable by som@m'gﬂ’u"zrlz S(G), then

1] = |
]{Z Smax{MNO(H):Hepi ](Gli} Smabc{M(H)Hem_](G)},

where My, (H) means the mamzmulm nullzty amo,ng all>matrices A in S(H) and the

zz-entry of A is nonzero for. all 7€ NO

Proof. The 2 x 2 matrix « in the proof of Theorem |36| is now of the form
* 0

*
and so invertible. Thus the matrix a~! is of the same form . Furthermore,
+ 0

for z € Ny, we know the zz-entry of aa~'a is nonzero since all considered matrices

are symmetric. O

Example 41. Let G be a multi-partite with three more parts and three more
vertices in each part. By some discussion we know that Z(G) = n -2, where n is the
number of vertices of G. Furthermore, each vertex is a zero-vertex in Z,,_»(G). To
apply Corollary [40} we may pick arbitrary i and j such that ij € F(G) and get that
Ny contains the vertices not in parts containing ¢ or j. Therefore Ny is not empty.
Since all graphs in 7;_; are graphs with n -2 vertices, we know that My, (H) <n-2
for all H in n;_; since Ny is not empty. If the nullity n -2 is achievable, then we get
the contradiction n -2 <n -2 by Corollary 40} Thus we know that M(G) <n - 2.
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9 Summary about upper bounds of M (G)

In this section, we discuss some other bounds for the maximum nullity of a simple
graph and the minimum rank of a pattern matrix. And these bounds could be
computed by the zero forcing number on bipartite.

In survey [I0], there is an upper bound for the maximum nullity of a simple

graph.

Definition 13. A looped graph is a graph that allows loops. A vertex x is a neighbor
of itself if and only if there is a loop on it. The zero forcing process on a looped graph

G is the coloring process with the following rules:

e Each vertex of G is either black or white initially.

e If y is the only white neighbor of 7, then change the color of y to black.

A set F ¢ V(Q) is called a zéro foreing setwif, witli-the initial condition that the
vertices in F' are black and-the fémaining vertices'are white, each vertex of G could
be forced into black by zero forcing process; And the Jero forcing number Z (@) is

the minimum size of a zero forcing Set.-l':;'-_'_-"_?.' ]

1''"m |}
Definition 14. Let G be a simple giraph'-.': The 'Ienhanced zero forcing number Z(G)
is the maximum of Z(GY over:all 1'bc_)ped graph| G eébtained from G by adding loops

on vertices of G.
Theorem 42 ([10]). For any graph @G,
M(G) < Z(G) < Z(G).

Thus we get two bounds for M (G) sharper than Z(G), called Z(G) and Z(G).
But actually they are the same by the following theorem.

Theorem 43. Let G be a simple graph with n vertez and I < [n] =V (G) is an index

set. Denote G to be the looped graph obtained from G by adding loops on vertices
in I and Gy be the graph defined in Section @ Then

Z(é\]) = Zy(é[) —-n,

where the zero forcing processes use the rules on looped graphs and rules on graphs

with banned edges respectly.
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Proof. We use the notation in the construction of G;. With the same ordering of
vertices, we say that {vi}ie[ 1) is the set of vertices of G 7. If i € I, then v; can force
itself and b; can force a;. If 7 ¢ I, then v; can force others without being black and
b; can force others even if a; is not black. Observe that the fact that v; can forces v;
if and only if b; forces a;. Two zero forcing processes do the corresponding coloring
steps on G and G;. Hence {v; }ies is a zero forcing set in G if and only if {a;}iesuY

is a zero forcing set in G, where J € [n] is some index set. O

On the other hand, we called a pattern matrix () to be a zero-nonzero pattern
matrix if the entries of () contains no u. Paper [3] provides a bound for zero-nonzero
pattern matrix. A t-triangle of ) is a t xt subpattern that is permutation similar to
a pattern that is upper triangular with all diagonal entries nonzero. The triangular
number of pattern @, denote by tri(@Q), is the maximum size of triangle in Q. It
was shown that : =

wmi(Q) > tri(@).<

And we may observe thatithe triangle anumperiand thesrank of @ are the same by
-1 _ 1|

the following theorem:. II -y ||
| -

|
Theorem 44. Let () be zero-noHem H;vgtern matrix. “Then
as || '

£ trli(iQ) 2 rank(!d)... _
Proof. We prove this theorem by showing that.
tri(Q) + Zy (G) = 2n,

where G is the bipartite given be @ in Section [6]
Again, use the notation in the construction of G. If now k = tri(Q). We may
assume, by permutation, () has a k-triangle in the first £ rows and the first &

columns. Now set

F = {ai}i>k uY.

Thus we know that the neighbors of b;, for i < k, must be contained in {a;};<; U
{a;};sk. This means b; can force a;. And by can force ay after a; becomes black.
Inductively, we can force a; finally. Hence F'2Y is a zero forcing set with support

Y. This means that

Zy(G) <|F|=2n-k=2n-tri(Q).
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Conversely, if Zy (G) =2n -k, we can find a set F' 2 Y with size 2n -k such that

F is a zero forcing set. We may relabel those vertices such that
F= {ai}Dk uyY

and b; forces a;, for ¢ < k, in the chronological list. Since b; can force a; initially,
we know the neighbors of b; contains only some elements in F' and a;. This means
that the first column of @) has its j-th entry to be zero for all 2 < j < k and its first
entry to be nonzero. Similarly, the neighbors of b; contains only some elements in
{a;}j<i-1u{a;j};sk and a;. So the i-th column has its j-th entry to be zero for all
1+ 1<j <k and its i-th entry to be nonzero. Thus the first £ columns and the first

k rows contain a k-triangle. This means that

tri(Q) I E D=y ().

[]

Also, now let @ be an 7z x p'zero-nonzero pattern matrix with the property that
each row and each column contain ap--l,e'as_t I(ﬂ_}_qe nonzero element *. Denote Q' to be

the (m +n) x (m + n) zer6-nenzero ]'Jat;m_f'&ati"ix

. |
f L
0 \a -J)/
were » is the pattern with all entries'to be %'of ap-propriate size, and H to be the

corresponding simple graph given by @’ ﬂ It was shown in paper [3] that

mr(Q) = mr(Q') = mr(H)

when the considered matriices are over the field of real numbers. So m+n—-Z2(H) is
also a lower bound for mr(Q). Again, the following theorem shows that this value

is exactly the rank of Q.

Theorem 45. Let () be a m xn zero-nonzero pattern matriz with the property that

each row and each column contain at least one nonzero element . Then
Z(H)=2Zy(G),

where H is the graph given before this theorem and G is the bipartite constructed

from @ in Section [6

5The diagonal entries of Q' are *. But this will not disturb the structure of the simple graph
H.
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Proof. The two graph H and G has the same number of vertices. And the only
difference between G and H is the two independent sets in the bipartite G are now
two cliques in H. So we may label the corresponding vertices in G and H the same

name. So we have

V(G)=V(H)=XUY,

where

X:{al,ag,...,am}, Y:{bl,bz,...,bn}.

For a given optimal zero forcing set F' 2 Y of G, observe that in the chronological
list given by F', we always use b; to force a; for some ¢ and j. Hence they will not use
the edges in X and Y. Also, the number of neighbors of b; in X does not increase.
So F'is also a zero forcing set of H. This implies

Z(H,) < Zy(G).

Now suppose [ is anoptimal zero forcing'set of-#H. First if I contains Y, then
F will also be a zero forcing set"with support Y of G-since each vertex in F'n X
cannot force others until it remains -@niy_ ohelwhite vertex. In this case, we have

done since Z(H) > Zy(G). Slmllar arguﬂE'nés for theicase F 2 X implies that

Z(H LZJG) .Zy(G)

by Theorem 22| Now we may assume that IX F| and |Y - F| are not zero. If
both of |X - F| and [V - F| are greateér thai or equal to 2, then every vertex has
at least two white neighbors. So this is impossible. Hence we assume first that
I X-F|>|Y-F|=1and Y - F = {y}. Since |X — F| > 1, those vertices in X cannot
force others. To begin the zero forcing process, there must be some vertex, denoted
by z, in Y such that it forces y. This means that all the neighbors in X of z are
elements of F. By our hypothesis, z has at least one neighbor in X. Denote it by
x. Thus we have the set F'—x +y is a zero forcing set with the same size of F' since

z will force x at the beginning. Thus we get
Z(H)=|F|=|F-x+y|>Zy(G)

since F' —y + x is again a set containing Y. Similar argument could be applied to
the case |[Y - F|>|X — F| =1 and the case | X - F|=|Y - F| = 1. In all cases, we will
have

Z(H) > Zy(G).

So this completes the proof. O
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It is a little bit depressed that we spend some time to proof a theorem who tells
us that we get no new bound by transforming a minimum rank problem of a pattern
matrix to a minimum rank problem of a simple graph. However, the theorem still

tell us some rule of possible zero forcing set of H.

Corollary 46. Let H and G be the graphs in Theorem [{J. All the optimal zero

forcing set of H must be of one of the following forms.

1. F, for some optimal zero forcing set F' of G with support X orY .

2. F—x+y, for some optimal zero forcing set F' of G with support X and for
some vertices x € X and yeY.

3. F —y+x, for some optimal zero forcing set F' of G with support Y and for

some vertices x € X and yeY.

Furthermore, in the second case, there always exists one common neighbor z € X
of x and y such that all the neighborsrof z ame.elemiénts in F except y. In the third
case, there always exists one common neighborz €Y of © and y such that all the

neighbors of z are elements in F except x. |
F o 'l_'_ el |

| [— & . 11
Proof. This is the result in the prciof of*Thebreth 45, O
1R 1B
This corollary could hélp us find a counterexample given in the next section.
I F

10 A counterexarhple to-a prdblem on edge spread

Similar to the zero spread of a vertex, we denote the zero spread of an edge e, or the
edge spread without confusion, to be the value z.(G) = Z(G) - Z(G - ¢€). Theorem
2.21 in paper [§] said that if z.(G) = -1, then for every optimal zero forcing chain
set of G, e is an edge in a chain. Also, in Question 2.22, the author asked that
whether the converse of Theorem 2.21 is true. Unfortunately, the following is a
counterexample saying that e is always used in any optimal chain, but the zero

spread is 0 but not —1.

Example 47. A turtle graph T is defined by the graph in Figure [16]
We may construct a graph G from 7. The vertex set of G is

V(G) = X UuY,

where

X = {al,(lg, Ce ,CL14}, Y = {bl,bg, Ce ,b14}.
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Figure 16: The turtle graph T'.

The edge set of G is
E(G) = E1 U EQ,

where g

Br = (osagii * I by L5k alyse JRE(T) or = 7).
e I| L b

A
Specify the edge e to be ,q-{_,]bl
= o)

¥ Il i i
chronological list of Z will use e ta n but Wg have
L ™~
i Y L ] ry
- e i 9
Proof. To see the behaxz;orx\tﬁ_{f,\ e meed the auxiliary graph
G'= (X UY, Ey). y W &
s, Y R =
First we claim that Zy(Gf");_;_=_?1'6f-'-and the obr;l'y_'bossible form of optimal zero
LG el ey o) L
forcing set of G’ is -
Fo=Y u{u,v}

or all its automorphism types, where u could be az or as and v could be ag or as.
It is easy to see that Fj is a zero forcing set with size 16. So we have Zy (G") < 16.
If now Zy (G') < 15, there is only one addtional vertex in X could be chosen. This
is impossible. So we know Fj is an optimal zero forcing set. Next we observe that
if az or a4 are chosen, then ags, a4, as will become black by zero forcing process. So
it’s impossible to choose two vertices in the set {as, a4, as}. Similarly, we know that

the two chosen vertices should come from two of the following sets
Vi={ay,as}, Va={as,as,as}, Vs ={as,ar,as},

Vi= {ag,aw,an}, Vs = {a12,a13,a14}.
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Also, the two chosen sets must be consecutive otherwise the zero forcing process
would stop after the two sets become totally black. So we may try the left possibil-
ities,
(V1,Va), (Va, V3), (V3, V).
However, the only possibility could only be (V3,V3). And we can find out that as
and ag cannot be chosen. So the set Fj is the only possibility.
One the other hand, by Corollary 46, we know the optimal zero forcing set of G

must be of one of the following types.

e [ or its automorphism types.
o {as,a4,p} V(Y —y;) or {ag,ar,q} U (Y —ys) or its automorphism types, where
p could be ag or ar, q could be as or a4, and ¥y, y» are arbitrarily vertices in Y

but Y1 # bs and Yo * be.
=

It is a tedious job. But weé may|cheek that every.optimal zero forcing set of G must

pass through the edge e =dyb; Thus we have finished-one part of the argument.
Finally, we may observe that | __ I
| | ':.'-FIF" | I
H = {agraot 0 Y

is a zero forcing set of G = e with Li?e 16. Thu$I '?ve know that Z(G —e) < 16. With
the help of Theorem 2.23 in thé same paper [8], we'get:that Z(G - e) could only be
16 and .

2(G)=16-16=0% -1,

Thus we finish the argument. O]

11 Further work

For a given graph, it is still hard to find its maximum nullity unless the lower and
the upper bounds meet. In general we just get some possible integers instead of an
unique value. If one could derive the reduction formula for k-seperate graphs, which
means several graphs with number of common vertices less than &, it would get the
exact value of the minimum rank.

On the other hand, the exhaustive zero forcing number is usually too complex
to compute. If one could get the reduction formula of vertex-sum for the exhaustive

zero forcing number, it would be a nice way to get the upper bound of the minimum
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rank. Taking another point of view of the exhaustive zero forcing number, in the
construction of it and even the zero forcing number, we never used the condition
“symmetry”. It is reasonable to believe that there is one another parameter between

M(G) and Z(G). And it may be sharp for cactus graphs.
For the pattern

0 % =
Q= 0 [,
* % 0

we know the minimum rank of @ is 2. However, if we denote mrs(@) to be the
minimum rank among matrices who are symmetric and of the pattern @), we will
find out that mrs(Q) is 3 but not 2. This illustrates the importance of symmetry.
It is hard to believe a parameter constructed without considering the symmetry will
always sharp.

Furthermore, if () is the pattern of-a grall)!}.l G .and @ denote the pattern whose
zero-nonzero pattern of diagonal entries are given by I, then we have

mr(G) = mrls('@;t;{g/?%) mrs(Q;).

Therefore, the zero-nonzero symmllat’ric nﬁin.imun:l rank problem plays an important
role if we want to find the mipimu!ml rani'(: of a gﬁ;aph.

Finally, the proof of M (C’n) = |2,: where C, is a circle of n vertices, in [13] is an
idea to test that of which pattern a-vector could b-e in the range space of matrices
of given pattern. The idea might be generalized by the concept of independence of

sign vectors.
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Appendix: List of computer programs

Sage is a open-source software. In [7], authors gave a program in Sage to compute the
bounds of minimum ranks. In this article, some zero forcing numbers were compute
by the program. And here we provide a program for computing zero forcing set and
number banned by some edges with given support. It was called generalized zero
forcing set (gfzs) and number (gZ) in the program instruction. Also, the program
can compute the exhaustive zero forcing number (EZ). Since the program contains
few concepts of algorithm, the computation of EZ still costs lots of time.

The following is the program listing. One may save it in EZ.sage and type in

“load EZ.sage” in the sage software.

def gzerosgame(g,F=[],B=][]):
e
Return the deriyed set folf a g'-q'aven graph g with set of banned<
— edges Biand «a~indgtial set of-.zg_e'rtices, The derived set <
>1is given by doing generalized zero_forcing process. That <«
>is, ifly z’s- the o_ﬁll_gj‘*._whi#éa:mhleighb07“' “of x and zy is not <
—>banned,| then z ca'ulf‘c?..lﬁw:éé .|y|z'nt0 black.

= |

I !
Input: | _rE_f ' [I
g: a simple gla|ph Hi :I !l
i |
F: a list oflvértices QL o

B: a list .of: tuples repv_fese;zting banned edges of g

Output:
A set of black vertices when zero forcing process <

—>stops.

Ezamples:
sage: gzerosgame (graphs.PathGraph(5) ,[0])
set ([0, 1, 2, 8, 4])
sage: gzerosgame (graphs.PathGraph(5) ,[0],[(1,2)])
set ([0, 1])
S=set (F) # suspicuous wvertices
Black_vertices=set (F) # current black wvertices
again=1 # iterate again or not
while again==1:
again=0

for x in S:
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25 N=set (g.neighbors(x))
D=N. difference (Black_vertices) # set of white<
< mneighbors
if len(D)==1:
for v in D:
y=v # the only white neighbor
30 if (((x,y) in B)=False) and (((y,x) <
—in B)=False):
again=1
S.remove(x)
S.add(y)
Black_vertices.add(y)
35 break
return(Black_vertices)
m@ﬁlﬁm
def gZ _leq(graph, suppoir@gg? b‘sghmed

»»»

40 For a given , if there is a <«
it; otherwise <

»returnﬁFals

Input: %
grapl?% a:
supporft!r%@\
45 banneds'é%:_ﬁ;,_a lz Sof tugﬂes

T i - P

i: an integer , the functzon check ¢gZ <= i or not

J"resentzng banned edges<

Output:
if F is a zero forcing set of size i and support is a<
> subset of F, then return F
50 False otherwise
FEzxamples :
sage: gZ_leq(graphs.PathGraph(5) ,[],[],1)
set ([0])
55 sage: gZ-leq(graphs.PathGraph(5) ,[],[(0,1)],1)
False

»wY

if i < len(support):

7

# print i cannot less than the cardinality of support’

60 return False
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j=i-len(support) # additional number of black wvertices
VX=graph.vertices ()
order=graph.order ()
for y in support:
65 VX.remove(y)
# VX is the wvertices outside support now
for subset in Subsets(VX,j):
test_set=set (support).union(subset) # the set is <
~>tested to be a zero forcing set
outcome=gzerosgame (graph, test_set , bannedset)
70 if len (outcome)=—order:
return test_set

return False

def find_gzfs(graph, supporfr:q[q][%%ﬁ'gb’tfwffé upper_bound=None, <

—lower_bound=None) : i ';"_;;:_ —-E'E_!'_' 1,“:'-;_,

Jr;{

»»»

-\.

75

For a given .Er

ter ﬂz-an the <«

L
= [Twrong ’].
e_aﬁ-:":t};\% return value <

"

ggeneraﬂz“elﬂ'

> will not be s
- x‘?\-\ et 'ﬁ".
-\.i_,? - o .":,'\'-:
ITE';'" .\::l;-‘l.- . ead ot ﬁ_-.-
Input: '-fnﬁ; {._4. Iﬁ-_ 1 :'F'
graph: a st p}@’; ﬂ_-'?g"jc _jﬂil
80 support: a list of wvertices of g

bannedset: a list of tuples representing banned edges<
> of graph

upper_bound: an integer supposed to be an upper bound<
> of gZ.

lower_bound: an integer supposed to be a lower bound <
sof gZ. The two bounds may shorten the computation<
< time. But one may leave it as default value if <

—s>one S not sure.

85 Output:
if F is an optimal zero forcing set of size i then <
sreturn F. If upper_bound is less than the general<«
- zero forcing number then return [’‘wrong ’].
Ezamples :
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90

95

100

110

115

120

125

find_gzfs (graphs.PathGraph(5))

sage:
set ([0])

sage: find_gzfs(graphs.PathGraph(5) ,[1],[(58,2)])
set ([0, 1, 3])

»yY

VX=graph. vertices ()
order=graph.order ()
s=len (support)

for y in support:

VX.remove (y)

# VX is the wvertices outside support mow

if upper_bound=—=None:
upper_bound=order # the default upper bound
gl [SIio) op
(il e g,

if lower_ bound—Nonﬁc-
_igmpora-}rrg lower bound
"“ﬂ i

lower_ boq:ﬂﬂ lerr.f"j&

for v,."in -
< =
:h:_i_:,'_"! o&ndﬁlen (D)])
foﬁi:rgv in ".'-'.:-
2 g |
% Be:;phd len (D) -1])

,gz ‘default lower bound

-,’m
"ﬂ)mz’%ﬁbound.#s #

i=upper_bound g S Gy o i 1
find=1 # does sage find a zero forcing set of size
outcome=["wrong’] # default outcome
while i>=lower_bound and find
find=0
leq=gZ_leq (graph,

7

support , bannedset , i

- 1 or not

if leq!=False:

outcome=leq

find=1
i=i-1
return outcome
support =[], bannedset=[], upper_bound=None, <«

def find_gZ (graph,
—lower_bound=None) :

200

For a given graph with support and banned set

44

i) # check g7 <=«

return the <



—>zero. upper_bound and lower_bound could be left as <«

>default value if one is not sure.

130 Input:
graph: a simple graph
support: a list of wertices of g
bannedset: a list of tuples representing banned edges<
> of graph
upper_bound: an integer supposed to be an upper bound<
> of gZ.
135 lower_bound: an integer supposed to be a lower bound <«
sof gZ. The two bounds may shorten the computation<
— time. But one may leave it as default value if <
—one 1S5 not sure.
SHEILELE
Output: ;
the ?ﬁ?r&ﬁi
140 Ezxamples :

145

return len ( flnd'ﬂ} %rﬁ%—h, supﬁbrt C-#ﬁ nedset upper_bound, <«
—lower_bound) E{Wrﬂm

def X(g):
150 For a given graph g, return the verices set X of a part of <
>the bipartite used to compute the exhaustive zero forcing<
- number.
Input:
g: a simple graph
155 Output:
a list of tuples (’a’,i) for all wvertices i of g
FEzamples :

sage: X(graphs.PathGraph(5))
160 [(Pa’, 0), (Ca’, 1), ("a’, 2), (a’, 3), (a’, 4)]
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»yy

return [(’a’,i) for i in g.vertices()]

def Y(g):
165 nrr
For a given graph g, return the wverices set Y of the other <
spart of the bipartite used to compute the exhaustive zero<
< forcing number.
Input:
g: a simple graph
170
Output:
a list of tuples (’b’,i) for all wvertices i of g
Ezamples :
175 sage

[(7 3), (b7, 4)]

” 0

return [(’

150 def tilde_ blpartlte%‘?*

”» 0

For a given g

—graph \widetitde{

" = .- - -
= forcing numbé%ﬁwfﬂ:ﬂ'

Input:
185 g: a simple graph
I: a list of vertices of g
Output:
the bipartite graph \widetilde{G}_I
190
Ezamples :

sage: h=tilde_bipartite (graphs.PathGraph(5) ,[1])
sage: h.vertices ()
[(Pa’, 0), (Ca’, 1), (Pa’, 2), (Pa’, 3), (Ca’, 4), ('«
=b’, 0), (707, 1), (b7, 2), (b7, 8), (b7, 4)]
195 sage: h.edges()
[((’a’, 0), (’b’, 1), None), ((’a’, 1), (b7, 0), <
>None), ((’a’, 1), (’b’, 1), None), ((’a’, 1), (’be
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-7, 2), None), ((’a’, 2), (’b’, 1), None), ((’a’, <«
=2), (’b’, 8), None), ((’a’, 8), (’b’, 2), None), <
>((’a’, 3), (707, 4), None), ((7a’, 4), (707, 3), <
—None) |
EO=[((’a’,i), (’b’,i)) for i in I] # edges given by I
El=[] # invariant edges
200 for i in g.vertices():
for j in g.neighbors(i):
Bl append (((*a’,i),('b’,1)))
h=Graph ()
h.add_vertices (X(g))
205 h.add_vertices (Y(g
h.add_edges (EO0)
h.add_edges (E1)

return h

))

210 def find_EZ(g, bound :5?)
»nY i . lﬁ

For a givenéqgrap
%numbeﬂ'alof g.

K
|\
Input: '{;‘3._ i .

215 g: a ségn le » ':__\i,;.-'
bound : f_ﬁﬁ%ge’ﬁ'-fas an@p@#ﬁ%nd It could be left <
>as def%}}ﬂ%wﬁfﬂﬂ} is notl sure.

Output:
the exhaustive zero forcing number (EZ) of ¢
220
Ezamples :
sage: find_EZ(graphs.PathGraph(5))
1

sage: h=graphs.CycleGraph(5)

225 sage: h.add_vertices ([5,6,7,8,9])
sage: h.add_edges ([(0,5),(1,6),(2,7),(3,8),(4,9)])
sage: find_EZ(h) # the EZ of a 5-sun

Ny

230 order=g.order ()
Z=find_gZ (g) # without support and banned set, the wvalue is <

>the original zero forcing number
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if bound==None:
bound=7Z # default upper bound
gZ _bound=bound+order
235 V=set (g.vertices())
e=-1 # temporary output
for I in Subsets(V):
leq=gZ_leq(tilde_bipartite(g,I1),Y(g) ,[],e) # this <
>avoid abundant computation
if leq=False:
240 e=find_gZ (tilde_bipartite (g,1),Y(g) ,[],<
—gZ bound ,e+1)
# in this case, we already know e+I1-order<=gZ<

s>-—order<=bound and so e+I<=gZ<=gZ_bound

if e=—gZ bound:
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