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Abstract

A traditional Nordhaus-Gaddum problem for a graph parameter β is to find a
(tight) upper or lower bound on the sum or product of β(G) and β(G) (where G

denotes the complement of G). An r-decomposition G1, . . . , Gr of the complete graph
Kn is a partition of the edges of Kn among r spanning subgraphs G1, . . . , Gr. A
traditional Nordhaus-Gaddum problem can be viewed as the special case for r = 2 of a
more general r-part sum or product Nordhaus-Gaddum type problem. We determine
the values of the r-part sum and product upper bounds asymptotically as n goes to
infinity for the parameters tree-width and its variants largeur d’arborescence, path-
width, and proper path-width. We also establish ranges for the lower bounds for
these parameters, and ranges for the upper and lower bounds of the r-part Nordhaus-
Gaddum type problems for the parameters Hadwiger number, the Colin de Verdière
number µ that is used to characterize planarity, and its variants ν and ξ.

Keywords. Nordhaus-Gaddum, multi-part, Hadwiger number, tree-width, largeur d’arborescence,
path-width, proper path-width, Colin de Verdière type parameter.
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1 Introduction

An r-decomposition of Kn = ([n], E) is a partition of the edges as the edge sets of r spanning
subgraphs Gi = ([n], Ei) for i = 1, . . . , r. An r-part Nordhaus-Gaddum problem for a graph
parameter β is to find a (tight) upper or lower bound on the sum

β(G1) + · · ·+ β(Gr)
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or on the product
β(G1) · · ·β(Gr).

It is common to exclude from these bounds graphs of order ≤ n0 for a fixed n0, or to ask
that the bound be approached for arbitrarily large n.

The study of Nordhaus-Gaddum type problems for more than two parts was initiated by
Füredi et al. in [10], and we follow the definitions of that paper. Let β be a nonnegative
integer valued graph parameter, and let r and n be positive integers. Define the Nordhaus-
Gaddum sum upper bound and sum lower bound:

β(r;n) := max {β(G1) + · · ·+ β(Gr)}

where the maximum is taken over all r-decompositions of Kn;

β(r;n) := min {β(G1) + · · ·+ β(Gr)}

where the minimum is taken over all r-decompositions of Kn (in [10] this lower value β is

denoted by β, but we believe a lower line is more mnemonic for a lower value).

Define the Nordhaus-Gaddum product upper bound and product lower bound:

β×(r;n) = max {β(G1) · · ·β(Gr)}

where the maximum is taken over all r-decompositions of Kn;

β×(r;n) = min {β(G1) · · ·β(Gr)}

where the minimum is taken over all r-decompositions of Kn. For the product lower bound,
because many of the parameters take on the value zero on an edgeless graph, we focus on
the non-degenerate bound β×

nd
(r;n), in which every graph in a decomposition must have an

edge (see Section 1.2).

Since β(1;n) = β(Kn) and similarly for the other bounds defined, we study decompo-
sitions with r ≥ 2. There is a rich literature on 2-part Nordhaus-Gaddum type problems
(see [1] for a survey). We study r-part Nordhaus-Gaddum type problems for the following
parameters: the Hadwiger number η, tree-width tw and its variants largeur d’arborescence
la, path-width pw, and proper path-width ppw, and the Colin de Verdière type parameters
µ, ν, ξ, all of which are minor monotone and have interesting relationships (see [3] for a dis-
cussion of these relations). Definitions of the parameters are given in Section 1.1. Kostochka
says [15, p. 307], “it is very important to study the Hadwiger number” due to its relation to
other ideas in graph theory, including Hadwiger’s famous conjecture. He establishes extensive
Nordhaus-Gaddum theory (r = 2) for η in [14, 15, 16]. Likewise, tree-width and its variants
have played a fundamental role in the theory of graph minors since their (re)introduction by
Robertson and Seymour in the early 1980s. Surprisingly, Nordhaus-Gaddum theory (r = 2)
has only recently been studied for tree-width and its variants, with the sum lower bound
established in [7, 13] and the sum upper bound established in [13]. In addition to other uses
in graph theory that motivated their introduction, Colin de Verdière type parameters have
played an important role in the study of minimum rank/maximum nullity of real symmetric
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matrices described by a graph (see [3, 8, 12]). The Nordhaus-Gaddum sum lower bound
(r = 2) is called the Graph Complement Conjecture in minimum rank literature (see [8]).

Here we state our main results. We begin with the sum upper bound.

Theorem 1.1.

(a) For a fixed r ≥ 2 and β one of tree-width tw or its variants largeur d’arborescence la,
path-width pw, or proper path-width ppw,

lim
n→∞

β(r;n)

n
= r.

(b) For a fixed r ≥ 2 and β one of the Hadwiger number η or the Colin de Verdière type
parameters µ, ν, ξ, β(r;n) = Θ(n). Specifically, for n ≥ 3 as n → ∞

r
⌈√

2r + 1
4
− 1

2

⌉ − o(1) ≤ β(r;n)

n
≤

√
r + o(1).

Theorem 1.1 is established by Theorems 2.1, 2.2, 2.4, and Corollary 2.5. It should be
noted that Theorem 1.1(a) was established for r = 2 and tree-width in [13] and better results
are known for Theorem 1.1(b) in the case that r = 2: Kostochka [14] showed that for n ≥ 5,

η(2;n) =
⌊

6
5
n
⌋

, so limn→∞
η(2;n)

n
= 6

5
> 1 = 2

⌈√
2·2+ 1

4
− 1

2

⌉ . Barrett et al. [4] showed that

4
3
≤ lim supn→∞

β(2;n)
n

≤
√
2 for β = ξ or ν. The fact that limn→∞

η(2;n)
n

< lim supn→∞
β(2;n)

n

for β ∈ {ξ, ν} suggests that the upper bound in Theorem 1.1(b) is not tight for η and the
lower bound is not tight for β ∈ {ξ, ν}, since our upper bound for η is obtained from our
upper bound for ξ and our lower bound for ν and ξ is obtained from our lower bound for η.

Next we consider the sum lower bound.

Theorem 1.2. For a fixed r ≥ 2 and n → ∞, η(r;n) = Θ( n√
logn

). Specifically, for n large
enough, 1

570r

n√
log n

≤ η(r;n) ≤ r
n√
logn

.

Theorem 1.2 is established by Theorem 3.1 using results of Kostochka [15].

It is known [7, 12, 13] that β(2;n) = n − 2 for β ∈ {tw, la, pw, ppw}, and conjectured
that β(2;n) = n− 2 for β ∈ {µ, ν, ξ} (see [8, 12] and the references therein). This does not
generalize to r > 2.

Theorem 1.3. For β ∈ {tw, la, pw, ppw} and r ≥ 3, β(r;n) = Θ(n). Specifically, as
n → ∞,

1

2
− o(1) < r −

√
r2 − r − o(1) ≤

β(r;n)

n
≤ 3

4
+ o(1).

Theorem 1.3 is established by Corollaries 3.3 and 3.5. Since η(G)− 1 ≤ ν(G) ≤ ξ(G) ≤
ppw(G) and η(G)− 1 ≤ µ(G) ≤ ξ(G) ≤ ppw(G) for any graph that has an edge, Theorems
1.2 and 1.3 imply lower and upper bounds on for β ∈ {µ, ν, ξ}.

Next we turn our attention to product bounds, beginning with the upper bound and
followed by the non-degenerate lower bound.
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Theorem 1.4.

(a) For a fixed r ≥ 2 and β one of tree-width tw or its variants la, pw, or ppw,

lim
n→∞

β×(r;n)

nr
= 1.

(b) For a fixed r ≥ 2 and β one of the Hadwiger number η or the Colin de Verdière type
parameters ν, µ, ξ, β×(r;n) = Θ(nr). Specifically, as n → ∞,

⌈

√

2r +
1

4
− 1

2

⌉−r

− o(1) ≤ β×(r;n)

nr
≤ (

√
r)−r + o(1).

Theorem 1.4 is established by Theorems 4.2 and 4.3. Again, better results are known
for Theorem 1.1(b) in the case that r = 2: Kostochka [14] showed that for n ≥ 5, η(2;n) =
⌊

1
4

⌊

6n
5

⌋2
⌋

, so limn→∞
η×(2;n)

n2 = 9
25

> 1
4
=
⌈√

2 · 2 + 1
4
− 1

2

⌉−2

. Barrett et al. [4] showed that

4
9
≤ lim supn→∞

β(2;n)
n

≤ 1
2
for β = ξ or ν. Again the upper bound in Theorem 1.1(b) is likely

not tight for η and the lower bound is likely not tight for β ∈ {ξ, ν}.

Theorem 1.5. For a fixed r ≥ 2 and β one of the Hadwiger number η, the Colin de
Verdière type parameters ν, µ, ξ, tree-width tw or its variants la, pw, or ppw, β×

nd
(r;n) =

Θ(n). Specifically:

(a) Let β ∈ {tw, la, pw, ppw}. For n ≥ 4, β×
nd
(2;n) = n− 3 [12]. For r ≥ 3 as n → ∞,

1

2
− o(1) ≤

β×
nd
(r;n)

n
≤ 1,

(b) For β ∈ {ν, ξ, µ}, r ≥ 2, and n ≥ 1,

1

22r−2
≤

β×
nd
(r;n)

n
≤ 1.

(c) For r ≥ 2 and n ≥ 1,

(0.513)r−2 ≤
η×
nd
(r;n)

n
≤ 2r−1.

Theorem 1.5 is established by Theorem 5.2 and Corollaries 5.6 and 5.7. In the case of
the Hadwiger number, the general lower bound, which permits graphs with no edges, is also
of interest.

Theorem 1.6. For a fixed r ≥ 2, η×(r;n) = Θ(n). Specifically,

(0.513)r−2 ≤
η×(r;n)

n
≤ 1.

Theorem 1.6 is established by Theorem 5.4, with the case η×(2;n) = n following from
results of Kostochka [16] (see Remark 5.3). We also make a conjecture about the product
lower bound for η, which is implied by Hadwiger’s Conjecture (see Remark 5.5).

Conjecture 1.7. For all r ≥ 2 and n ≥ 1, η×(r;n) = n.
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1.1 Definitions of parameters and notation

All graphs are simple, undirected, and finite, G denotes a graph, and n denotes the order of
G. A more complete description of the parameters discussed here (and the graph notation
we use) can be found in [3] and [12]. The clique number ω(G) is the maximum order of a
clique in G and the Hadwiger number η(G) is the maximum order of a clique minor of G.

A graph consisting of isolated vertices has tree-width zero (and similarly for the variants
of tree-width defined here), so in the remainder of this paragraph we assume a graph has
an edge. Let k be a positive integer. A k-tree is constructed inductively by starting with
a complete graph on k + 1 vertices and connecting each new vertex to the vertices of an
existing clique on k vertices, so a tree of order at least two is a 1-tree. The tree-width tw(G)
is the minimum k for which G is a subgraph of a k-tree. Every k-tree has at least two
vertices of degree k. The maximal cliques of a k-tree are of order k + 1, and the facets of
a maximal clique are its k-clique subgraphs. A linear k-tree is constructed inductively by
starting with Kk+1 and connecting each new vertex to a facet that includes the vertex added
in the previous step. The proper path-width ppw(G) is the minimum k for which G is a
subgraph of a linear k-tree. A k-caterpillar is constructed by starting with Kk+1 and at each
stage adding a new maximal clique by adjoining a new vertex to the k vertices of some facet
of the maximal clique that was added in the previous step. The path-width pw(G) is the
minimum k for which G is a subgraph of a k-caterpillar. A two-sided k-tree is constructed
by starting with Kk+1 and connecting each new vertex to the vertices of an existing Kk

that either includes a vertex of degree k or is the same as the Kk to which some previous
vertex was connected. The largeur d’arborescence la(G) is the minimum k for which G is a
subgraph of a two-sided k-tree. Clearly tw(G) ≤ la(G) ≤ pw(G) ≤ ppw(G) for every graph
G. It is known that la(G) ≤ tw(G) + 1 [5] and ppw(G) ≤ pw(G) + 1 [18] for every graph
G. A more comprehensive discussion of these parameters, including justification for some of
the equivalent definitions used here, is given in [3].

The Colin de Verdière type parameters are linear algebraic graph parameters. All
matrices discussed are real and symmetric; the set of n × n real symmetric matrices is
denoted by Sn(R). For A = [aij ] ∈ Sn(R), the graph of A is G(A) = ([n], E) where
E = {{i, j} : i, j ∈ [n], i 6= j, and aij 6= 0}; the diagonal of A is ignored in determining
G(A). The set of symmetric matrices described by G is S(G) = {A ∈ Sn(R) : G(A) = G}. A
real symmetric matrix A satisfies the Strong Arnold Property provided there does not exist
a nonzero real symmetric matrix X satisfying AX = O, A ◦X = O, and I ◦X = O, where
◦ denotes the entry-wise product, i.e., (A ◦ B)ij = aijbij , I is the identity matrix, and O is
the zero matrix. The parameter ξ(G) is the maximum nullity among matrices A ∈ S(G)
satisfying the Strong Arnold Property. The parameter ν(G) is the maximum nullity among
positive semidefinite matrices A ∈ S(G) satisfying the Strong Arnold Property (a matrix
A ∈ Sn(R) is positive semidefinite if all eigenvalues of A are nonnegative). The Colin de
Verdière number µ(G) is defined to be the maximum nullity among symmetric matrices
A = [aij ] ∈ S(G) such that A satisfies the Strong Arnold Hypothesis, A has exactly one
negative eigenvalue, and A is a generalized Laplacian (i.e., for all i 6= j, aij ≤ 0).

Asymptotic comparisons arise naturally in our work, and since some of the notation has
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more than one interpretation in the papers cited, we state our notation here. Let f and g

be real valued functions of N. We say: f is o(g) if limn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
= 0; f is O(g) if there exist

constants C,N such that |f(n)| ≤ C|g(n)| for all n ≥ N ; f is Ω(g) if there exist constants
C,N such that |f(n)| ≥ C|g(n)| for all n ≥ N ; f is Θ(g) if f is O(g) and Ω(g).

1.2 Decompositions and non-degeneracy

A random r-decomposition is an r-decomposition of Kn in which each Gi is a G(n, 1
r
) random

graph (with the understanding that necessarily the Gi are dependent).

Lemma 1.8. For fixed r and n large, a random r-decomposition exists.

Proof. Each edge of Kn is assigned by an independent r-valued variable that determines
which of the graphs Gi, i = 1, . . . , r, is assigned the edge. Thus Gi, i = 1, . . . , r, is an
r-decomposition of Kn and each Gi has probability

1
r
for each edge, i.e., Gi is G(n, 1

r
).

Some of the results we use require a graph to have an edge. A non-degenerate r-
decomposition of Kn = ([n], E) is a partition of the edges as the edge sets of r spanning
subgraphs Gi = ([n], Ei), i = 1, . . . , r with Ei 6= ∅ for i = 1, . . . , r. We define non-degenerate
versions of the four bounds, βnd(r;n), βnd

(r;n), β×
nd(r;n), and β×

nd
(r;n), where the maximum

or minimum is taken over all non-degenerate r-decompositions of Kn.

Suppose G1, G2, . . . , Gr is an r-decomposition on n vertices. If in this decomposition
there are exactly ℓ graphs each having at least one edge, we may assume that Gℓ+1 = · · · =
Gr = Kn are empty graphs, so that G1, . . . , Gℓ form a non-degenerate ℓ-decomposition.

Observation 1.9. Assuming β(Kn) = 0 or β(Kn) = 1, the relationship between degenerate
and non-degenerate sum bounds is:

β(r;n) =







max
1≤ℓ≤n

{βnd(ℓ;n) + (r − ℓ)β(Kn)} if β(Kn) = 1,

max1≤ℓ≤n{βnd(ℓ;n)} if β(Kn) = 0;

β(r;n) =







min
1≤ℓ≤n

{β
nd
(ℓ;n) + (r − ℓ)β(Kn)} if β(Kn) = 1,

min1≤ℓ≤n{βnd
(ℓ;n)} if β(Kn) = 0;

Observation 1.10. Assuming β(Kn) = 0 or β(Kn) = 1, the relationship between degenerate
and non-degenerate product bounds is:

β×(r;n) =







max
1≤ℓ≤r

{β×
nd(ℓ;n)} if β(Kn) = 1,

β×
nd(r;n) if β(Kn) = 0;

β×(r;n) =

{

min
1≤ℓ≤r

{β×
nd
(ℓ;n)} if β(Kn) = 1,

0 if β(Kn) = 0.

In the case of the product lower bound for parameters having β(Kn) = 0, the non-
degenerate parameter is clearly the more interesting one.
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2 Nordhaus-Gaddum Sum Upper Bounds

For all the parameters β ∈ {η, µ, ν, ξ, tw, la, pw, ppw}, β(G) ≤ n, so β(r;n) ≤ rn. For
tree-width and its variants largeur d’arborescence, path-width and proper path-width, this
is essentially the best we can do.

Theorem 2.1. For a fixed r ≥ 2, tw(r;n) = rn− o(n) = la(r;n) = pw(r;n) = ppw(r;n).

Proof. For tree-width, this follows from the fact that for fixed p > 0, tw(G(n, p)) = n− o(n)
[17], the existence of a random r-decomposition (Lemma 1.8), and the linearity of expectation
(see, for example, [20, Lemma 8.5.7]). The remaining statements follow from the fact that
ppw(G) ≥ pw(G) ≥ la(G) ≥ tw(G) for all G.

Next we consider the Colin de Verdière type parameters and Hadwiger number.

Theorem 2.2. Let β ∈ {ξ, ν, µ}. For a fixed r ≥ 2 and n ≥ 2
√
r, β(r;n) ≤ √

rn. For a
fixed r ≥ 2 and n ≥ 2

√
r, η(r;n) ≤ √

r n+ r.

Proof. We begin by establishing the statement for ξ. It is shown in [11] that for any

graph G = (V (G), E(G)), |E(G)| ≥ ξ(G)(ξ(G)+1)
2

− 1. In [4] it is noted that this im-
plies ξ(G)2 ≤ 2|E(G)| for every graph G that has an edge. Let G1, . . . , Gr be a non-

degenerate r-decomposition of Kn. Let 1 denote the all ones vector of length r and ~ξ :=
[ξ(G1), . . . , ξ(Gr)]

T . Then

‖~ξ‖22 = ξ(G1)
2 + · · ·+ ξ(Gr)

2 ≤ 2(|E(G1)|+ · · ·+ |E(Gr)|) ≤ 2

(

n2

2

)

= n2.

That is, ‖~ξ‖2 ≤ n. By the Cauchy-Schwarz inequality,

ξ(G1) + · · ·+ ξ(Gr) = 1
T ~ξ ≤ ‖1‖2‖~ξ‖2 ≤

√
r n,

so ξnd(r;n) ≤
√
r n.

Now assume n ≥ 2
√
r. By Observation 1.9,

ξ(r;n) = max
1≤ℓ≤n

{ξnd(ℓ;n) + (r − ℓ)ξ(Kn)} ≤ max
1≤ℓ≤n

{
√
ℓ n + r − ℓ} ≤

√
r n.

The last inequality follows from the assumption that n ≥ 2
√
r by elementary algebra.

Since ν(G) ≤ ξ(G) and µ(G) ≤ ξ(G) for all graphs G, ν(r;n) ≤ ξ(r;n) and µ(r;n) ≤
ξ(r;n) for all r ≥ 2 and n. Since η(G)− 1 ≤ ν(G) for all graphs G, η(r;n) ≤ ν(r;n) + r for
all r ≥ 2 and n.

Remark 2.3. For any minor monotone parameter β, n ≥ m implies β(r;n) ≥ β(r;m),
because we can take a decomposition G1, . . . , Gr that realizes β(r;m), add the extra vertices
to every Gi, and allocate the extra edges among the Gi however we choose without lowering
β(G1) + · · ·+ β(Gr).
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A triangular number is a number of the form t(t+1)
2

for some positive integer t. For an

arbitrary positive integer r, define the triangular root of r by trt(r) :=
√

2r + 1
4
− 1

2
, so

t = ⌈trt(r)⌉ is equivalent to t(t+1)
2

< r ≤ (t+1)(t+2)
2

.

Theorem 2.4.

(i) Fix r ≥ 2 and define t := ⌈trt(r)⌉. Then for every s ≥ 1 and n := ts,
r

t
n + (r − t) ≤ η(r;n).

(ii) For a fixed r ≥ 2 and n → ∞,
r

⌈√

2r + 1
4
− 1

2

⌉ n− o(n) ≤ η(r;n).

Proof. (i): Let n = ts. Partition the vertices into sets Vi, i = 1, . . . , t of s vertices each. For
i = 1, . . . , t define Hi to be the subgraph of Kn induced by Vi (isomorphic to Ks) together
with the n − s vertices not in Vi (as isolated vertices). For i = 1, . . . , t − 1, j = i + 1, . . . , t
define Hi,j to be the subgraph of Kn consisting of all n vertices and the edges having one
end-point in Vi and the other in Vj; Hi,j is isomorphic to Ks,s and isolated vertices. This

defines t(t+1)
2

subgraphs. By the choice of t, r ≤ t(t+1)
2

. This allows us to assign Gi = Hi

for i = 1, . . . , t and then pick r − t distinct Hj,k’s as {Gi}ri=t+1. Put every edge not in any
of {Gi}ti=1 in G1 so that {Gi}ti=1 forms an r-decomposition. Now η(Gi) ≥ η(Ks) = s for
i = 1, . . . , t and η(Gi) ≥ η(Ks,s) = s + 1 for s = t + 1, . . . , r (with the latter done by
contracting a matching of cardinality s− 1 ). Therefore,

η(r;n) ≥
r
∑

i=1

η(Gi) ≥ ts + (r − t)(s+ 1) = rs+ (r − t) ≥ r

t
n+ (r − t).

(ii): Define t := ⌈trt(r)⌉, and for n ≥ t, define q :=
⌊

n
t

⌋

andm := qt. Note that n−m < t.
By Remark 2.3 and part (i),

η(r;n) ≥ η(r;m) ≥ r

t
m =

r

t
n− r

t
(n−m) ≥ r

t
n− r =

r

t
n− o(n).

Since η(G)− 1 ≤ µ(G) ≤ ξ(G), η(r;n)− r ≤ µ(r;n) ≤ ξ(r;n) (and similarly for ν), the
next corollary is immediate.

Corollary 2.5. Let β ∈ {µ, ν, ξ}.
(i) Fix r ≥ 2 and define t := ⌈trt(r)⌉. Then for every s ≥ 1 and n := ts,

r

t
n− t ≤ β(r;n).

(ii) For a fixed r ≥ 2 and n → ∞,
r

⌈√

2r + 1
4
− 1

2

⌉ n− o(n) ≤ β(r;n).

Thus, r
⌈√

2r+ 1

4
− 1

2

⌉ ≤ lim supn→∞
β(r;n)

n
≤ √

r for β ∈ {ξ, ν, µ, η}. In Table 1 we provide

the values of these lower and upper bounds for small r.
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Table 1: Lower and upper bounds for lim sup
n→∞

β(r;n)

n
when β ∈ {ξ, ν, µ, η}

r r
⌈√

2r+ 1

4
− 1

2

⌉

√
r

3 1.5 1.73205
4 1.33333 2.
5 1.66667 2.23607
6 2. 2.44949
7 1.75 2.64575
8 2. 2.82843
9 2.25 3.
10 2.5 3.16228

3 Nordhaus-Gaddum Sum Lower Bounds

We use the ideas in Kostochka’s proof that η(2;n) = Θ( n√
logn

) [15, Corollary 5] to establish

an analogous result for η(r;n) with r ≥ 3.

Theorem 3.1. For a fixed r ≥ 2 and n → ∞, η(r;n) = Θ( n√
logn

). Specifically, for n large
enough,

1

570r

n√
log n

≤ η(r;n) ≤ r
n√
logn

.

Proof. Let Gi = (Vi, Ei) be any r-decomposition of Kn. Then there must be some Gℓ that

has |Eℓ| ≥ n(n−1)
2r

. So by [15, Theorem 1] with k = n−1
2r

,

η(G1) + · · ·+ η(Gr) ≥ η(Gℓ) ≥
k

270
√
log k

≥ n− 1

540r
√

log (n− 1)
.

Thus for n ≥ 19, η(r;n) ≥ 1
570r

n√
logn

.

Almost all graphs G of order n have η(G) ≤ n√
logn

[15, p. 308]. Thus there exists an
r-decomposition such that

η(G1) + · · ·+ η(Gr) ≤ r
n√
log n

,

and η(r;n) ≤ r n√
logn

.

The next two results establish upper bounds for the sum lower bound β(r;n) for r ≥ 3
and β ∈ {µ, ν, ξ, tw, la, pw, ppw}, beginning with path-width.

Theorem 3.2. For r ≥ 3, pw(r;n) ≤ 3
⌈

n
4

⌉

.
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Proof. Consider the case n = 4p and r = 3 first, and define the following 3-decomposition
(illustrated in Figure 1): Partition the vertices of Kn into four sets Vi, i = 1, . . . , 4 of p
vertices each. The edges of G1 are the edges within V1, the edges within V4, the edges
between V1 and V2, and the edges between V3 and V4. The edges of G2 are the edges within
V2, the edges within V3, the edges between V1 and V3, and the edges between V2 and V4. The
edges of G3 are the edges between V1 and V4, and the edges between V2 and V3.

G1 G2 G3

Figure 1: Schematic diagram of a decomposition ofK4p with pw(G1)+pw(G2)+pw(G3) = 3p,
where the shaded regions have all edges and the unshaded regions have no edges.

Observe that G1 and G2 each consist of two copies of the same graph H , so pw(G1) =
pw(G2) = pw(H). Since H can be constructed by starting with a Kp and adding p additional
vertices each adjacent to all the vertices of the originalKp, pw(H) = p. Note that G3 consists
of two copies of Kp,p and pw(Kp,p) = p. Therefore,

3

4
n = 3p = pw(G1) + pw(G1) + pw(G1) ≥ pw(3;n).

For the case in which n = 4p+ℓ with 1 ≤ ℓ ≤ 3, assign p+1 vertices to Vi, i = 1, . . . , ℓ and
p to the other sets. Then pw(Gi) ≤ p+1 =

⌈

n
4

⌉

, and 3
⌈

n
4

⌉

≥ pw(G1) + pw(G2) + pw(G3) ≥
pw(3;n). For the case of r > 3, a degenerate decomposition can be used.

Corollary 3.3.

(i) Let β ∈ {tw, la, pw}. For r ≥ 3,

β(r;n) ≤ 3
⌈n

4

⌉

and β
nd
(r;n) ≤ 3

⌈n

4

⌉

+ r − 3.

(ii) For r ≥ 3,

ppw(r;n) ≤ 3
⌈n

4

⌉

+ r and ppw
nd
(r;n) ≤ 3

⌈n

4

⌉

+ 2r − 3.

Proof. The first statement in (i) follows from Theorem 3.2 together with the inequality
tw(G) ≤ la(G) ≤ pw(G) for all graphs G. The second statement in (i) follows from the first
statement by first constructing a degenerate r-decomposition based on the non-degenerate
3-decomposition in Theorem 3.2, and then removing r− 3 edges from G3 and placing one of
these edges in each Gi, i = 4, . . . , n. Statement (ii) follows from statement (i) and the fact
that ppw(G) ≤ pw(G) + 1 for any graph G.

Theorem 3.4. For r ≥ 2 and n ≥ 1,

tw(r;n) ≥ rn− 1

2
r −

√

(r2 − r)n2 − (r2 − r)n+
1

4
r2.

10



Proof. First note that every k-tree on n vertices (necessarily n ≥ k + 1) has

Ek :=
k(k − 1)

2
+ (n− k)k = −1

2
k2 + (n− 1

2
)k

edges. So if |V (G)| = n and tw(G) = k, then |E(G)| ≤ Ek. Suppose Kn is decomposed as
{Gi}ri=1, with ak graphs having tw(Gi) = k for k = 0, . . . , n − 1. Since every edge of Kn

must be covered,
n−1
∑

k=0

akEk ≥ n(n− 1)

2
. (1)

So we are trying to minimize
∑r

i=1 tw(Gi) subject to inequality (1).

We begin by defining S1 and S2 by

S1 :=

n−1
∑

k=0

akk =

r
∑

i=1

tw(Gi);

S2 :=

n−1
∑

k=0

akk
2.

Since S2 can be viewed as the sum of r =
∑n−1

k=0 ak squares, by Cauchy-Schwarz inequality,

(

n−1
∑

k=0

akk
2

)

(

r · 12
)

≥
(

n−1
∑

k=0

akk

)2

.

This means S2 ≥ S2

1

r
.

n−1
∑

k=0

akEk = −1

2
S2 + (n− 1

2
)S1

≤ − 1

2r
S2
1 + (n− 1

2
)S1.

So inequality (1) implies

− 1

2r
S2
1 + (n− 1

2
)S1 −

n(n− 1)

2
≥ 0.

By solving the inequality,

r
∑

i=1

tw(Gi) = S1 ≥ rn− 1

2
r −

√

(r2 − r)n2 − (r2 − r)n+
1

4
r2.

So tw(r;n) is also greater than or equal to this value.

Corollary 3.5. Let β ∈ {tw, la, pw, ppw}. For r ≥ 2,

lim inf
n→∞

β(r;n)

n
≥ r −

√
r2 − r >

1

2
.

11



Proof. For a fixed r,

lim
n→∞

rn− 1
2
r −

√

(r2 − r)n2 − (r2 − r)n+ 1
4
r2

n
= r −

√
r2 − r ≥ 1

2
,

with the last inequality verified by simple algebra.

Corollary 3.6.

(i) For r ≥ 3 and n ≥ 19,
1

570r

n√
log n

− r ≤ ν(r;n) ≤ νnd(r;n) ≤ 3
⌈n

4

⌉

+ r − 3.

(ii) Let β ∈ {µ, ξ}. For r ≥ 3 and n ≥ 19,
1

570r

n√
logn

− r ≤ β(r;n) ≤ β
nd
(r;n) ≤ 3

⌈n

4

⌉

+ 2r − 3.

Proof. The first inequality in each statement follows from Theorem 3.1 and the inequalities
η(G) − 1 ≤ ν(G) and η(G) − 1 ≤ µ(G) ≤ ξ(G) for all graphs G. The third inequality
in statement (i) (respectively, (ii)) follows from the non-degenerate case in Corollary 3.3(i)
(respectively, 3.3(ii)) and the fact that for a graph G that has an edge, ν(G) ≤ la(G) [5]
(respectively, µ(G) ≤ ξ(G) ≤ ppw(G) [3]).

Corollaries 3.3 and 3.6 provide our best upper bounds on β(r;n) as n → ∞ for r ≥ 3 and
β ∈ {µ, ν, ξ, tw, la, pw, ppw}. However, for n in the range 2r ≤ n < 4r (and in some cases
somewhat larger), the bound in the next theorem is better, and it is also used in Section 5.

Theorem 3.7. Let β ∈ {µ, ν, ξ, tw, la, pw, ppw}. For r ≥ 2 and n ≥ 2r,

β(r;n) ≤ β
nd
(r;n) ≤ n− r,

and n− r is realized by a non-degenerate decomposition in which all but at most one of the
graphs are paths.

Proof. Consider proper path-width first. Define K2r to be the subgraph of Kn induced by
the vertices [2r]. We can partition the r(2r−1) edges of K2r into r paths each having 2r−1
edges [19]. Without loss of generality, one of the paths, which we call the “last path,” is
(1, 2, . . . , 2r). Define the following non-degenerate r-decomposition of Kn = ([n], E): The
r − 1 paths of K2r that are not the last path, each taken together with n − 2r isolated

vertices, denoted by Pi = ([n], Ei), i = 1, . . . , r − 1, and Pr =
(

[n], E \
(

∪̇r−1
i=1Ei

))

; observe

that Pr includes the last path. For every i = 1, . . . , r − 1, ppw(Pi) = 1. We construct
Pr as a linear (n − 2r + 1)-tree as follows: Begin with the (n − 2r + 2)-clique induced by
{2r − 1, . . . , n}. For i = 1, . . . , 2r − 2, add vertex 2r − 1 − i adjacent to 2r − i and to
each vertex in {2r + 1, . . . , n}. Thus ppw(Pr) = n − 2r + 1. Since each Pi has an edge,
ppw

nd
(r, n) ≤ (r − 1) · 1 + (n− 2r + 1) = n− r.

Finally, tw(G) ≤ la(G) ≤ pw(G) ≤ ppw(G), ν(G) ≤ la(G), and µ(G) ≤ ξ(G) ≤
ppw(G) for every graph G that has an edge, and the decomposition just constructed is
non-degenerate. Thus we have β

nd
(r;n) ≤ n− r for β ∈ {µ, ν, ξ, tw, la, pw}.
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4 Nordhaus-Gaddum Product Upper Bounds

To see the relation between sums and products, we use the inequality of arithmetic and
geometric means (AM-GM inequality)

r
∏

i=1

ai ≤ r−r

(

r
∑

i=1

ai

)r

for nonnegative real numbers a1, a2, . . . , ar.

To establish a lower bound for a product, we use a technical lemma.

Lemma 4.1. For fixed integers r ≥ 2 and n ≥ 1, let a1, a2, . . . , ar be integers such that
1 ≤ ai ≤ n for all i. Let σ =

∑r

i=1 ai and π =
∏r

i=1 ai. Then nqρ ≤ π, where q =
⌊

σ−r
n−1

⌋

and
ρ = σ − r − q(n− 1) + 1.

Proof. Suppose 1 < a1 ≤ a2 < n. Observe that

(a1 − 1) + (a2 + 1) +
r
∑

i=3

ai = σ

but
(a1 − 1)(a2 + 1)

r
∏

i=1

ai < π.

Therefore, subject to a fixed σ, the value of π is minimized when all values of ai’s but at
most one are either 1 or n. This is equivalent to solving for nonnegative integers q and ρ in

σ = (r − 1− q) · 1 + qn+ ρ,

where 1 ≤ ρ < n. This equation can be rewritten as σ − r = q(n − 1) + (ρ − 1) with
0 ≤ ρ− 1 < n− 1. Therefore, q =

⌊

σ−r
n−1

⌋

is uniquely determined by the division algorithm,
and so is ρ = σ − r − q(n− 1) + 1.

For all parameters β discussed in this paper, β(G) ≤ n (where n is the order of G).
Therefore, β×(r;n) ≤ nr. For tree-width and its variants largeur d’arborescence, path-width
and proper path-width, this upper bound is essentially the best we can do.

Theorem 4.2. Let β ∈ {tw, la, pw, ppw}. For all r ≥ 2, β×(r;n) = β×
nd(r;n) = nr − o(nr).

Proof. Since ppw(G) ≥ pw(G) ≥ la(G) ≥ tw(G) for all G, it is enough to prove tw×(r;n) =
nr − o(nr).

By Observation 1.10, tw×(r;n) = tw×
nd(r;n). Theorem 2.1 shows that twnd(r;n) =

rn− o(n), since when n is large enough such that tw(r;n) ≥ rn− 0.5n, the value of tw(r;n)
can be achieved only by a non-degenerate decomposition (because tw(G) ≤ n−1). Fix ǫ with
0 < ǫ < 1. When n is large enough, there is a non-degenerate r-decomposition G1, . . . , Gr

such that
tw(G1) + · · ·+ tw(Gr) ≥ (r − ǫ)n.

13



Applying Lemma 4.1 with σ = (r − ǫ)n, we get q =
⌊

(r−ǫ)n−r

n−1

⌋

=
⌊

r − ǫn
n−1

⌋

= r − 1 for n

large enough, and ρ = (r − ǫ)n− (r − 1)n = (1− ǫ)n, so

tw(G1) · · · tw(Gr) ≥ (1− ǫ)nr.

Since ǫ > 0 can be taken arbitrarily small, tw×
nd(r;n) = nr − o(nr).

Theorem 4.3. Let β ∈ {ξ, ν, µ, η}. For r ≥ 2, and any n ≥ 2
√
r,

t−rnr − o(nr) ≤ β×(r;n) ≤ r−
r

2nr + o(nr),

where t := ⌈trt(r)⌉ =
⌈
√

2r + 1
4
− 1

2

⌉

.

Proof. The upper bound comes immediately from Theorem 2.2 and the AM-GM inequality.
To see the lower bound, we build a decomposition as follows. Let t be the minimum integer
such that r ≤ t(t+1)

2
, i.e., t = ⌈trt(r)⌉. Partition the vertex set into t parts V1, V2, . . . , Vt

with |Vi| ≥
⌊

n
t

⌋

for all i. Consider Hi as the subgraph with all edges in Vi, and Hi,j as the
subgraph with all edges between Vi and Vj. We have ν(Hi) ≥ η(Hi) − 1 ≥

⌊

n
t

⌋

− 1 and
ν(Hi,j) ≥ η(Hi,j) − 1 ≥

⌊

n
t

⌋

(and similarly for µ). Take r subgraphs out of those Hi and
Hi,j, then merge all remaining edges to one of the subgraphs. This builds a r-decomposition
with product at least

(⌊n

t

⌋

− 1
)r

.

Therefore, β×(r;n) ≥ t−rnr − o(nr).

5 Nordhaus-Gaddum Product Lower Bounds

For β ∈ {η, µ, ν, ξ, tw, la, pw, ppw} we show that the growth rate of β×
nd
(r;n) is Θ(n).

Recall that for β ∈ {tw, la, pw, ppw}, β(Kn) = 0, so β×(r;n) = 0; therefore, for these pa-
rameters we focus on the non-degenerate case. We first prove a technical result that allows us
to convert a sum lower bound to a product lower bound for non-degenerate decompositions.

Theorem 5.1. Suppose that for r ≥ 2 and every graph G on n vertices that has an edge,
1 ≤ β(G) ≤ n and β

nd
(r;n) < n+ r − 1. Then

β
nd
(r;n)− r + 1 ≤ β×

nd
(r;n)

This formula also applies to β×(r;n) if the hypotheses are satisfied for all graphs G (without
the restriction of having an edge).

Proof. Let G1, . . . , Gr be a non-degenerate r-decomposition that achieves β×
nd
(r;n). Pick

1 ≤ ai ≤ β(Gi) such that
∑r

i=1 ai = β
nd
(r;n) < n + r − 1. Now apply Lemma 4.1 with

σ = β
nd
(r;n). Then q =

⌊

σ−r
n−1

⌋

= 0 and ρ = σ − r + 1. Therefore,

nqρ = σ − r + 1 ≤
r
∏

i=1

ai ≤ β×
nd
(r;n).

When β(G) ≥ 1 for all G, the same argument works for β×(r;n).

14



Theorem 5.2. Let β ∈ {tw, la, pw, ppw}.

(i) For n ≥ 4,
β×
nd
(2;n) = n− 3.

(ii) For a fixed r ≥ 3 and n large enough,

n

2
− r + 1 ≤ β×

nd
(r;n) ≤ n− 2r + 1.

Proof. By the non-degenerate r-decomposition of Kn into r− 1 paths and one large piece in
Theorem 3.7,

ppw×
nd
(r;n) ≤ n− 2r + 1.

Note that twnd(r;n) ≥ tw(r;n) by definition. By [7, 13], tw(2;n) ≥ n − 2, and for r ≥ 3
and n large enough, tw(r;n) ≥ n

2
by Corollary 3.5. Consequently, Theorem 5.1 implies

tw×
nd(2;n) ≥ n− 3, and tw×

nd(r;n) ≥ n
2
− r + 1 for r ≥ 3 and n large enough.

Note that Theorem 5.2(i) was established in [12] but non-degeneracy was implicitly as-
sumed and should have been stated. Next we consider the Hadwiger number. Since η(G) = 1
if and only if G has no edges, both the general and non-degenerate decompositions are of
interest, and the product lower bounds have different values in the case r = 2.

Remark 5.3. It is known [16] that η×
nd
(2;n) ≥

⌈

3n−5
2

⌉

. If one of the two parts has no

edge, then the decomposition becomes Kn and Kn, and the product is n. When n ≥ 4,
n ≤

⌈

3n−5
2

⌉

, so η×(2;n) = n (because the decomposition Kn, Kn also provides an upper
bound). So η×

nd
(2;n) > η×(2;n) for n ≥ 5. By checking small cases, we see that η×(2;n) = n

for all n.

For a graph G on n vertices, Balogh and Kostochka, building on work of Duchet and
Meyniel [6] and Fox [9], showed in [2] that

0.513n ≤ η(G)ω(G).

Theorem 5.4. For all r ≥ 2 and n ≥ 1,

(0.513)r−2n ≤ η×(r;n) ≤ n.

Proof. The upper bound is achieved by one complete graph and r − 1 empty graphs.

We prove the lower bound by induction. For base case r = 2, we already know η×(2;n) =
n. Assuming η×(r − 1;n) ≥ (0.513)r−3n, we consider a r-decomposition G1, . . . , Gr. Since

η(G1)ω(G1) ≥ 0.513n, there is a clique in G1 on the vertex set W with |W | ≥ 0.513 n
η(G1)

.
Now

η(G1) · · ·η(Gr) ≥ η(G1)η(G2[W ]) · · · η(Gr[W ])

≥ η(G1) · (0.513)r−3|W | ≥ (0.513)r−2n,

since G2[W ], . . . , Gr[W ] form an (r − 1)-decomposition of the clique on W .
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Remark 5.5. It is known that χ×(r;n) = n for all r and n [10, p. 277]. On the other hand,
Hadwiger’s conjecture states that η(G) ≥ χ(G) for all graph G. Therefore, Hadwiger’s
conjecture implies η×(r;n) ≥ n, and thus implies Conjecture 1.7, so any counterexample to
Conjecture 1.7 would disprove Hadwiger’s conjecture.

Corollary 5.6. For all r ≥ 2 and n ≥ 2r,

(0.513)r−2n ≤ η×
nd
(r;n) ≤ 2r−1(n− 2r + 2).

Proof. The lower bound is by Theorem 5.4 and the fact η×
nd
(r;n) ≥ η×(r;n). On the other

hand, let P1, P2, . . . , Pr be the r-decomposition in Theorem 3.3. Recall that the Hadwiger
number of a path is 2 whenever it has more than one vertex. Since Pi is a path for i =
1, . . . , r− 1 and η(Pr) ≤ ppw(Pr)+ 1 = n− 2r+2, we have η×

nd
(r;n) ≤ 2r−1(n− 2r+2).

A peculiarity of the parameters ξ, ν, and µ is that β(Pn) = β(Kn) = 1 for β ∈ {ξ, ν, µ}
(and n ≥ 2 in the case of µ). Thus β× is not optimized on Kn for these parameters, and we
focus on the non-degenerate versions.

Corollary 5.7. Let β ∈ {ν, ξ, µ}. For r ≥ 2 and n ≥ 2r,
n

22r−2
≤ β×

nd
(r;n) ≤ n− 2r + 1.

Proof. For β ∈ {ν, ξ, µ}, η(G) − 1 ≤ β(G) ≤ ppw(G) when G has an edge. The result
then follows from Theorem 5.2 and Corollary 5.6, since β(G) ≥ η(G) − 1 ≥ 1

2
η(G) and

η×
nd
(r;n) ≥ (0.513)r−2n ≥ n

2r−2 .
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