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Michael Young

The student author and the program of study committee are solely responsible for the
content of this dissertation. The Graduate College will ensure this dissertation is globally

accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright © Chin-Hung Lin, 2017. All rights reserved.



ii

DEDICATION

To my family in Taiwan

and my friends in Tortuga.

—Jephian



iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2. ODD CYCLE ZERO FORCING PARAMETERS AND

THE MINIMUM RANK OF GRAPH BLOWUPS . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Different types of zero forcing numbers . . . . . . . . . . . . . . . . 11

2.2 Odd cycle zero forcing number Zoc(G) . . . . . . . . . . . . . . . . . . . . . 14

2.3 Enhanced odd cycle zero forcing number Ẑoc(G) . . . . . . . . . . . . . . . 21
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ABSTRACT

The minimum rank problem refers to finding the smallest possible rank, or equiv-

alently the largest possible nullity, among matrices under certain restrictions. These

restrictions can be the zero-nonzero pattern, conditions on the inertia, or other prop-

erties of a matrix. Zero forcing is a powerful technique for controlling the nullity and

plays a significant role in the minimum rank problem. This thesis introduces several zero

forcing parameters and their applications on the minimum rank problem.

Zero-nonzero patterns can be described by graphs: The edges (including the loops)

represent the nonzero entries, while the non-edges correspond to the zero entries. For

simple graphs, where no loops are allowed, the diagonal entries can be any real numbers.

The maximum nullity of a graph is the maximum nullity among symmetric matrices with

the pattern described by the graph. In Chapter 2, the odd cycle zero forcing number

Zoc(G) and the enhanced odd cycle zero forcing number Ẑoc(G) are introduced as bounds

for the maximum nullities of loop graphs G and simple graphs G, respectively. Also, a

relation between loop graphs and simple graphs through graph blowups is developed.

The Colin de Verdière type parameter ξ(G) is defined as the maximum nullity of

real symmetric matrices A with the pattern described by G and with the Strong Arnold

Property (SAP), which means X = O is the only symmetric matrix that satisfies A○X =

I ○X = AX = O (here ○ is the entrywise product). Chapter 3 introduces zero forcing

parameters ZSAP(G) and Zvc(G); we show that ZSAP(G) = 0 implies every symmetric

matrix with the pattern described by G has the SAP and that the inequality M(G) −

Zvc(G) ≤ ξ(G) holds for every graph G. Also, the values of ξ(G) are computed for all

graphs up to 7 vertices, establishing ξ(G) = ⌊Z⌋(G) for these graphs.
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CHAPTER 1. INTRODUCTION

The minimum rank problem is to determine the smallest rank or the largest nul-

lity over a family of matrices under certain restrictions. These restrictions can be the

zero-nonzero pattern, conditions on the inertia, or other properties of a matrix. Since

the sum of the rank and the nullity is the dimension of a matrix, finding the minimum

rank and finding the maximum nullity are equivalent. A tool that frequently appears in

many aspects of the minimum rank problem is zero forcing. Zero forcing aims to control

the nullity of a (homogeneous) linear system through the following mechanics. At the

beginning, we pick some variables and mark them as blue, while others are marked as

white. Assume all the blue variables equal to zero and the values of white variables

are unknown; if for some equation, all variables with nonzero coefficients are blue (zero)

except for one, then this remaining variable turns blue (zero), because the given infor-

mation forces it to be zero. If starting with a blue/white coloring can eventually make

all variables blue, then the number of initial blue variables is an upper bound of the

nullity of the linear system. This thesis introduces several new zero forcing parameters

and studies their applications to the minimum rank problem.

A classical minimum rank problem concerns the maximum nullity of a graph and has

been studied extensively; see [9,10] for surveys. Let G be a simple graph on n vertices. Its

associated family S(G) of matrices collects those n × n real symmetric matrices whose

off-diagonal i, j-entry is nonzero whenever i and j are adjacent in G. The maximum

nullity of G is the largest nullity of matrices in S(G) and is denoted by M(G). The

study of M(G) is motivated by the inverse eigenvalue problem of a graph, which asks
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the possible spectra of matrices in S(G); each eigenvalue in the spectrum can have its

multiplicity at most M(G). By changing the set of matrices considered, variants of the

maximum nullity are defined and have their own applications. The maximum positive

semidefinite nullity M+(G) is the largest nullity for positive semidefinite matrices in

S(G), and it computes the minimum dimension of a linear space where an orthogonal

representation of G exists [14]. The Haemers rank and the Colin de Verdière parameter

are defined in a similar flavor; the Haemers rank gives an upper bound for the Shannon

capacity [13], while the Colin de Verdière parameter characterizes planar graphs [7]. The

maximum nullity can also be defined on loop graphs, where the nonzero/zero pattern on

the diagonal is given by the loops.

The zero forcing number Z(G) can be defined through a color-change game on vertices

of a graph G, where vertices are blue or white; Z(G) is defined as the minimum number

of blue vertices required initially so that all vertices will turn blue at the end by repeated

applications of the following color-change rule: If x is a blue vertex and y is the only white

neighbor of x in G, then y turns blue. The zero forcing number Z(G) was introduced

as an upper bound of the maximum nullity M(G) [1]. Zero forcing number was also

introduced by physicists independently for the study of quantum control [5]. Few years

later, variants of zero forcing was found to be related to the fast-mixed search in computer

science [11] and the cops-and-robber game in graph theory [2]. Zero forcing can also be

used for designing logic circuits [6]. Many variants of the maximum nullity are bounded

above by variants of the zero forcing number; see [2] for the related parameters and their

relations.

The Colin de Verdière type parameters are the maximum nullities over certain matri-

ces with the Strong Arnold Property; they draw the attention of graph theorists because

of the minor-monotonicity of these parameters in addition to other important properties.

A real symmetric matrix A is said to have the Strong Arnold Property (SAP) if X = O

is the only symmetric matrix that satisfies A ○ X = I ○ X = AX = O, where ○ is the
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entrywise product. The Colin de Verdière parameter µ(G) is the maximum nullity over

matrices in S(G) with non-positive off-diagonal entries, exactly one negative eigenvalue,

and the SAP. The parameter µ(G) has nice topological properties: A graph G is planar

if and only if µ(G) ≤ 3, is outer-planar if and only if µ(G) ≤ 2, and is a disjoint union of

paths if and only if µ(G) ≤ 1 [7]. Also, if a graph H is a minor of another graph G, then

µ(H) ≤ µ(G). This property is called the minor-monotonicity, and all Colin de Verdière

type parameters are minor-monotone [3, 7, 8]. As a result of the graph minor theorem,

these parameters can be computed for small values by checking a known (finite) list of

forbidden minors.

1.1 Overview

In Chapter 2, we will consider the maximum nullity of simple graphs and that of

loop graphs. Upper bounds utilizing zero forcing will be given for both types of graphs.

When a simple graph is a blowup of a loop graph, we will establish a relation between

their maximum nullities and their zero forcing numbers. Chapter 2 will also consider the

maximum nullities MF (G) over other fields F ; when the field is R, we simply write it as

M(G).

A simple graph is a graph without loops or multiedges, while a loop graph is a graph

where each vertex can have at most one loop (but not multiple edges). For a loop graph

G, the associated family S(G) of matrices consists of those real symmetric matrices

whose i, j-entry is nonzero whenever {i, j} is an edge (or a loop) in G, and the maximum

nullity M(G) is the largest nullity over matrices in S(G). Therefore, the loops control

the diagonal entries. The simple graphs and loop graphs are bridged by the notion of

loop configurations. For a simple graph G, a loop configuration of G is a loop graph G

obtained from G by designating each vertex as having or not having a loop. By definition,

M(G) = maxGM(G), where the maximum is over all loop configurations G of G.
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The zero forcing number Z(G) of a loop graph G is the minimum number of blue

vertices required so that all vertices can turn blue by repeated applications of the fol-

lowing color-change rule: If y is the only white neighbor of x, then y turns blue. Here

x is considered as a neighbor of itself if and only if there is a loop on it. Notice that

in this color-change rule, x is not required to be blue to make a force. It is known [15]

that M(G) ≤ Z(G) for every loop graph G. Through the loop configurations, one can

easily shift an upper bound on loop graphs to an upper bound on simple graphs. That

is, Ẑ(G) = maxGZ(G), where the maximum is over all loop configurations G of G, is an

upper bound of M(G). Indeed, it is known [2] that M(G) ≤ Ẑ(G) ≤ Z(G), and each of

the inequalities can be strict.

A family of loop graphs G such that M(G) < Z(G) is the loopless odd cycles. Let Cn

denote the simple graph of a cycle on n vertices. The loopless odd cycle C0
2k+1 is a loop

configuration of C2k+1 with no loop on each vertex. It is known [4] that M(C0
2k+1) = 0 and

Z(C0
2k+1) = 1 for all k ≥ 1. This fact suggests a way to design a new zero forcing number by

modifying the color-change rule with one more statement, “whenever a loopless odd cycle

appears as a component of the subgraph induced on the current white vertices, make

all vertices on it blue.” In Section 2.2, we will define the odd cycle zero forcing number

Zoc(G) and show that M(G) ≤ Zoc(G) ≤ Z(G). For many graphs with M(G) < Z(G),

now we have M(G) = Zoc(G).

In Section 2.3, we will define the enhanced odd cycle zero forcing number as Ẑoc(G) =

maxGZoc(G), where the maximum is over all loop configurations G of G, and show that

M(G) ≤ Ẑoc(G) ≤ Ẑ(G) ≤ Z(G), providing a new upper bound forM(G). Corollary 2.4.9

and Proposition 2.6.1 provide examples showing that Ẑ(G)− Ẑoc(G) and Ẑoc(G)−M(G)

can be arbitrarily large.

Graph blowup is a transformation from a loop graph to a simple graph and was used

for the characterization of the minimum ranks over finite fields [12]. In Section 2.4, we

will define graph blowups and show that M(H) = Ẑoc(H) if M(G) = Zoc(G), provided
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that H is a “large” blowup of G; moreover, the value of M(H) = Ẑoc(H) can be obtained

by the value of M(G) = Zoc(G). In Section 2.5, we will consider the graph complement

conjecture for M(G) and show that this conjecture is true for most graph blowups.

Chapter 3 will consider the Strong Arnold Property. The SAP, a property of a matrix,

has been used to define the Colin de Verdière type parameters ξ, µ, and ν. The parameter

ξ(G) is the largest nullity of matrices in S(G) with the SAP. Therefore, ξ(G) ≤M(G)

and the only difference between their definitions is the SAP. In Section 3.2, we will

introduce a new parameter ZSAP(G) and show that if ZSAP(G) = 0 then every matrix

in S(G) has the SAP, implying ξ(G) = M(G). Based on the computational results in

Table 3.1, graphs with this property do not seem to be rare.

In Section 3.3, we will introduce another parameter Zvc(G) and show that M(G) −

ξ(G) ≤ Zvc(G) for every graph G. With the help of ZSAP(G), Zvc(G), and some existing

theorems, Section 3.4 will provide a way to compute the values of ξ(G) for graphs G up

to 7 vertices and show that for such graphs ξ(G) = ⌊Z⌋(G), where ⌊Z⌋(G) is the minor

monotone floor of the zero forcing number introduced in [2] and defined in Section 3.4.

Variants of ZSAP(G) and Zvc(G) are also introduced in Chapter 3 and their relations

are illustrated in Figure 3.1.

1.2 Organization of the thesis

This thesis is a collection of papers published in journals. Chapter 1 gives a general

overview of the minimum rank problem and its relation with zero forcing. Chapter

2 and 3 are two self-contained papers. Chapter 2 contains the paper “Odd cycle zero

forcing parameters and the minimum rank of graph blowups” published in the Electronic

Journal of Linear Algebra [16]. Chapter 3 contains the paper “Using a new zero forcing

process to guarantee the Strong Arnold Property” published in Linear Algebra and its

Applications [17]. Both papers are individual works of Jephian Chin-Hung Lin under
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the guidance of his advisors Leslie Hogben and Steve Butler.

Chapter 4 will contains concluding remarks and possible future research directions

for the minimum rank problem and zero forcing.
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CHAPTER 2. ODD CYCLE ZERO FORCING

PARAMETERS AND THE MINIMUM RANK OF GRAPH

BLOWUPS

A paper published in the Electronic Journal of Linear Algebra

Jephian C.-H. Lin

Abstract

The minimum rank problem for a simple graph G and a given field F is to determine

the smallest possible rank among symmetric matrices over F whose i, j-entry, i ≠ j, is

nonzero whenever i is adjacent to j, and zero otherwise; the diagonal entries can be any

element in F . In contrast, loop graphs G go one step further to restrict the diagonal

i, i-entries as nonzero whenever i has a loop, and zero otherwise. When charF ≠ 2, we

introduce the odd cycle zero forcing number and the enhanced odd cycle zero forcing

number as bounds for loop graphs and simple graphs respectively. We also build a

relation between loop graphs and simple graphs through graph blowups, so that the

minimum rank problem of some families of simple graphs can be reduced to that of

much smaller loop graphs.

2.1 Introduction

For a given graph, the minimum rank problem is to determine the smallest possible

rank among a family of matrices associated to the graph. Depending on the types of
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graphs, the definitions of the associated matrices are different. In this paper, we focus on

simple graphs and loop graphs, provide new bounds for both of them, and develop their

relation on the minimum rank problem through graph blowups (which will be defined in

Section 2.4).

A simple graph is a graph without loops or multiedges; a loop graph is a graph where

each vertex can have at most one loop. Given a field F , the set of associated matrices of

a simple graph G is denoted by SF (G) and defined as the family of symmetric matrices

over F whose i, j-entry, i ≠ j, is nonzero whenever i is adjacent to j, and zero otherwise;

in contrast, the associated matrices SF (G) of a loop graph G is the family of symmetric

matrices over F whose i, j-entry (i = j is possible) is nonzero whenever i is adjacent to j,

and zero otherwise. Note that in a loop graph, i is adjacent to itself if and only if i has a

loop. To point out the difference, the diagonal entries can be any element in F for simple

graphs; however, for loop graphs, the zero-nonzero pattern on the diagonal is controlled

by the loops. A graph without any loops can be considered as a simple graph G or

a loop graph G without loops, but the definitions for SF (G) and SF (G) are different,

since SF (G) allows free diagonal while SF (G) requires zero diagonal. Therefore, a simple

graph is usually denoted as G and a loop graph is denoted as G.

The minimum rank of a given graph, is defined as the smallest possible rank in SF (G),

or SF (G). For a simple graph G and a loop graph G, the minimum ranks are written

as mrF (G) = min{rank(A) ∶ A ∈ SF (G)} and mrF (G) = min{rank(A) ∶ A ∈ SF (G)}

respectively. Equivalently, the problem of finding the minimum rank of a graph can be

viewed as finding the maximum nullity, which is defined as MF (G) = max{null(A) ∶ A ∈

SF (G)} and MF (G) = max{null(A) ∶ A ∈ SF (G)}. This is because mrF (G) +MF (G) =

∣V (G)∣ for any simple graph G, or similarly when G is replaced by any loop graph G.

The minimum rank problem is a relaxation of the inverse eigenvalue problem, and

also essentially related to orthogonal representations and the Colin de Verdiére type

parameters (see [10]). For the study of the minimum rank problem, the zero forcing
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number Z was introduced in [1], and then [13] extended to each type of graph as a

“universal” upper bound for the maximum nullity. That is, MF (G) ≤ Z(G) for any

field F and any simple graph G, or when G is replaced by a loop graph G. Zero forcing

parameters will be discussed in Section 2.1.1

In the sense of the maximum nullity and the zero forcing number, the relation between

simple graphs and loop graphs is bridged by the loop configurations. A loop configuration

of a simple graph G is a loop graph G obtained from G by designating each vertex as

having no loop or one loop. So for a given simple graph G with n vertices, there are

2n possible loop configurations of G. Through this definition, the maximum nullity of

a simple graph can be obtained from the maximum nullities of its loop configurations.

That is, MF (G) = maxGMF (G), where G runs over all loop configurations of G. Since

MF (G) ≤ Z(G) for each of the loop configurations, the enhanced zero forcing number

Ẑ(G) was introduced in [4] and is defined as Ẑ(G) = maxGZ(G), where the maximum

is over all loop configurations G of G. In the same paper, it is shown MF (G) ≤ Ẑ(G) ≤

Z(G) for any simple graph G and any field F . This suggests that the consideration of

loop graphs can improve the upper bound given by Z(G).

For the field of real numbers, it is known [8] that MR(G) = Z(G) for any simple

graph with ∣V (G)∣ ≤ 7, yet this is not the case for loop graphs. For example, let Cn

be the cycle on n vertices, as a simple graph. A loopless odd cycle C0
2k+1 is the loop

configuration of C2k+1 without any loop. For a loopless odd cycle C0
2k+1, its maximum

nullity MF (C0
2k+1) = 0 for any field F with characteristic charF ≠ 2, but Z(C0

2k+1) = 1 [7].

That means, even for small loop graphs like C0
3, there is a gap.

When charF ≠ 2, loopless odd cycles play an important role, and allow us to discover

new upper bounds for both loop graphs and simple graphs. In Section 2.2, we define

a new parameter called the odd cycle zero forcing number, Zoc(G), for loop graphs G;

meanwhile, Theorem 2.2.8 proves that MF (G) ≤ Zoc(G) ≤ Z(G), and Corollary 2.2.9

states that MR(G) = Zoc(G) whenever F = R and G is a loop configuration of a complete
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graph or a cycle, which fixes the gap between Z(C0
2k+1) and MR(C0

2k+1).

Following the same track of the enhanced zero forcing number, when charF ≠ 2,

the odd cycle zero forcing number for loop graphs also leads to a new bound for simple

graphs. In Section 2.3, the enhanced odd cycle zero forcing number Ẑoc(G) for simple

graphs is introduced with the property MF (G) ≤ Ẑoc(G) ≤ Ẑ(G) ≤ Z(G). Example 2.3.3

shows that MR(K3,3,3) = Ẑoc(K3,3,3) = 6 and Ẑ(K3,3,3) = 7, where K3,3,3 is the complete

tripartite (simple) graph. Corollary 2.4.9 and Proposition 2.6.1 provide examples showing

that Ẑ(G) − Ẑoc(G) and Ẑoc(G) −MR(G) can be arbitrarily large.

Graph blowups are a transformation from a loop graph to a simple graph, and were

used for the characterization for minimum rank over finite fields [12]. In Section 2.4,

graph blowups are defined, and Theorem 2.4.7 shows that MF (H) = Ẑoc(H) if MF (G) =

Zoc(G), provided that H is a “large” blowup of G. That means the maximum nullity of

a graph blowup, which is a simple graph, can be obtained by the maximum nullity of a

much smaller loop graph.

In Section 2.5, the graph complement conjecture for M(G) is shown to be true for

most graph blowups; while the graph complement conjecture for Ẑoc(G) is true for any

simple graph.

2.1.1 Different types of zero forcing numbers

There are several different types of zero forcing numbers, but they all serve as upper

bounds for the maximum nullity for different types of graphs. In this section, the zero

forcing number Z(G) for simple graphs G and the zero forcing number Z(G) for loop

graphs G will be discussed.

The zero forcing number starts by the zero forcing game, where vertices are blue or

white and different color-change rules may apply on different types of graphs. For simple

graphs G, the color-change rule is

• if y ∈ V (G) is the only white neighbor of x ∈ V (G) and x is blue, then y turns blue;
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for loop graphs G, the color-change rule is

• if y ∈ V (G) is the only white neighbor of x ∈ V (G) (where x = y is possible), then

y turns blue.

So one of the major differences is for simple graphs, x should be blue first so x can force

its neighbor y to turn blue, but for loop graphs, this need not be the case. Also, we

emphasize the neighbors of x for loop graphs refers to those vertices which are adjacent

to x. So it is possible that x itself is the only white neighbor of x, when there is a loop

on x.

On a graph with vertex set V , a subset B ⊆ V is called a zero forcing set if setting

the vertices of B blue and the others white can make the whole set V change to blue

through repeated applications of the corresponding color-change rule. The zero forcing

number Z(G), or Z(G), is defined to be the minimum cardinality of a zero forcing set

on a simple graph G, or a loop graph G, using the appropriate color-change rule.

Suppose G is a loop configuration of a simple graph G. Then any zero forcing set of

G is a zero forcing set of G, so Z(G) ≤ Z(G). This establishes the stated theorem

MF (G) ≤ Ẑ(G) ≤ Z(G)

in [4].

As mentioned, there is a gap between MF (G) and Z(G) when G is a loopless odd

cycle and charF ≠ 2. In fact, this also happens on some loop configurations of complete

graphs, when C0
3 appears on it. For loop configurations of complete graphs, the maximum

nullity can be found in [7] and Proposition 2.1.1 provides the zero forcing number .

Proposition 2.1.1. Let Kn be the complete (simple) graph on n vertices and K
`(s)
n its
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loop configuration with s loops. Then

MR(K
`(s)
n ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if n − s = 1 = n;

n − 1 if n − s = 0 and 1 ≤ n;

n − 2 if 1 ≤ n − s ≤ 2 ≤ n;

n − 3 if 3 ≤ n − s,

and

Z(K
`(s)
n ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if n − s = 1 = n;

n − 1 if n − s = 0 and 1 ≤ n;

n − 2 if 1 ≤ n − s and 2 ≤ n.

Proof. SinceMR(G)+mrR(G) = ∣V (G)∣ for every loop graph G, the formula forMR(K
`(s)
n )

comes from Proposition 5.5 in [7]. To determine the zero forcing number, two cases are

considered. When n−s ≤ 2, the formulas for Z(K
`(s)
n ) and M(K

`(s)
n ) agree with each other,

so it is enough to find a zero forcing set of cardinality M(K
`(s)
n ). When n− s = 1 = n, the

graph has only one vertex, which makes a zero forcing set. When n − s = 0 and 1 ≤ n,

any set of n−1 vertices can be a zero forcing set. When 1 ≤ n− s ≤ 2 ≤ n, any set of n−2

vertices with loops forms a zero forcing set.

In the case of 3 ≤ n−s, by coloring all vertices blue except two vertices without loops,

it becomes a zero forcing set. However, if there are 3 white vertices initially, then every

vertex will have at least two white neighbors (beside itself), so it cannot be a zero forcing

set. As a consequence, n − 2 is the zero forcing number.

Proposition 2.1.2. [7] Let Cn be the (simple) cycle on n vertices and Cn one of its

loop configurations. Then MR(Cn) = Z(Cn) whenever Cn is not a loopless odd cycle. For

loopless odd cycles C0
2k+1, MR(C0

2k+1) = 0 but Z(C0
2k+1) = 1.

Remark 2.1.3. The equality MF (C0
2k+1) = 0 holds for any field F with charF ≠ 2. This

is because a loop graph G with a unique spanning generalized cycle always has M(G) = 0

if charF ≠ 2 [11] (spanning generalized cycles are called spanning composite cycles in [7]).
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This states that every matrix in SF (C0
2k+1) is nonsingular whenever charF ≠ 2. On the

other hand, MF (C0
2k+1) = 1 if charF = 2, because Z(C0

2k+1) = 1 and the adjacency matrix

of C0
2k+1 over F has determinant 0. Symmetry is also crucial, since the asymmetric matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1

1 0 −1

1 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

follows the zero-nonzero pattern given by C0
3 but has nullity 1.

2.2 Odd cycle zero forcing number Zoc(G)

This section exploits Remark 2.1.3 to develop a new upper bound of MF (G) for loop

graphs G when charF ≠ 2.

For a loop graph G and a subset of vertices W ⊆ V (G), the induced subgraph of G on

W is the loop graph obtained from G by deleting all vertices outside W , which keeps all

those edges and loops with their two endpoints in W . The odd cycle zero forcing number

is an extension of the conventional zero forcing number by adding one more rule.

Definition 2.2.1. On a given loop graph G, where vertices are marked blue or white,

the color-change rule for Zoc (CCR-Zoc) is:

(a) if y ∈ V (G) is the only white neighbor of x ∈ V (G) (where x = y is possible), then

y turns blue.

(b) if W is the set of white vertices and G[W ] contains a component C, as a loopless

odd cycle, then all vertices of C turn blue.

If starting with B ⊆ V (G) as initial blue vertices makes the whole set V (G) change

to blue through repeated applications of CCR-Zoc, then B is a zero forcing set for Zoc

(ZFS-Zoc) on G. The odd cycle zero forcing number is defined as

Zoc(G) = min{∣B∣ ∶ B is a ZFS-Zoc on G}.
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Remark 2.2.2. Given an initial blue set, no matter what order the rules (a) and (b)

are applied, the process always stops at some unique final coloring where neither color-

change rule can be used. To see this, suppose at a certain step, W is the set of white

vertices and C is a loopless odd cycle as a component of G[W ]; also suppose y ∈ V (C) is

the only white neighbor of x. In this situation, we can apply rule (b), and all vertices in

V (C) turns blue; on the other hand, if we apply rule (a) instead to make y blue, then all

vertices in V (C) will eventually turn blue, since y is a (conventional) zero forcing set of

C. So the order of using rule (a) and rule (b) will not affect the final set of blue vertices.

For implementing an algorithm, one can consider rule (b) only when rule (a) no longer

applies. (A fast implementation of rule (a) exists but no fast implementation of rule (b)

currently exists. This explains our preference for rule (a).)

The following concepts are helpful for understanding this new color-change rule. A

chronological list for Zoc records how a ZFS-Zoc makes all vertices blue, and is defined

as (Xi → Yi)si=1, where at the i-th step, if rule (a) is applied, then Xi = {x} and Yi = {y},

while if rule (b) is applied, then Xi = Yi = V (C). Here x, y, and C are as those in

Definition 2.2.1. A zero forcing process for Zoc (ZFP-Zoc) refers to the initial blue set

B and its chronological list. Note that a ZFS-Zoc may have different ways of applying

CCR-Zoc, so the chronological list for Zoc with a given ZFS-Zoc is not unique. Note that

we do not restrict the ZFS-Zoc of a chronological list to be a minimum ZFS-Zoc; when it

is minimum, the chronological list and ZFP-Zoc are said to be optimal.

For a given chronological list, we can draw a corresponding digraph on V (G) with

arcs indicated by Xi → Yi. If Xi = {x} and Yi = {y}, then x→ y is added; if Xi = Yi = V (C)

for some loopless odd cycle C, then an odd directed cycle is added, with some circular

orientation. With these definitions, each (weakly connected) component of this digraph

is called a maximal chain.

On a digraph, a sequence of vertices with structure v1 → v2 → ⋯ → vn is called a

directed n-path, where v1 is called the tail and vn is called the head of this directed path;
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and a sequence of vertices with the structure v1 → v2 → ⋯ → vn → v1 is called a directed

n-cycle. On digraphs, a directed 1-cycle or a directed 2-cycle are possible, and they are

a vertex with a loop or two vertices with two arcs of both directions.

Example 2.2.3. Let G be the loop graph in Figure 2.1 and B = {3} be the initial blue

set. Then the column on the left is one possible chronological list, while the column on

the right is its reversal, which reverses the order of the list and switches the roles of Xi’s

and Yi’s. The reversal is also a ZFP-Zoc, with the initial blue set B′ = {6}.

{2} → {1} {10} → {10}

{1} → {2} {7,8,9} → {7,8,9}

{3} → {4} {5} → {4}

{5} → {6} {6} → {5}

{4} → {5} {4} → {3}

{7,8,9} → {7,8,9} {2} → {1}

{10} → {10} {1} → {2}

Following this chronological list, its maximal chains are shown in Figure 2.1, including

a vertex with a directed 1-cycle on {10}, a directed 2-cycle on {1,2}, a directed path on

{3,4,5,6}, and a directed odd cycle on {7,8,9} given by rule (b).

Example 2.2.3 shows all possible types of maximal chains. Proposition 2.2.4 and

Proposition 2.2.5 develop some general properties for maximal chains.

Proposition 2.2.4. Let G be a loop graph and B a ZFS-Zoc on G. Let ζ be a ZFP-

Zoc with its initial blue set B and Γ the corresponding digraph of ζ. By CCR-Zoc, the

following properties hold:

(1) for every vertex x ∈ B, the in-degree of x in Γ is 0;

(2) for every vertex x ∈ V (G) ∖B, the in-degree of x in Γ is 1;

(3) for every vertex x ∈ V (G), the out-degree of x in Γ is at most 1;



17

1

2
3

4

5

6

7

8

9
10

G

1

2
3

4

5

6

7

8

9
10

maximal chains

Figure 2.1 The loop graph G for Example 2.2.3 and its maximal chains

(4) each maximal chain is either a directed 1-cycle, a directed 2-cycle, a directed path,

or a directed odd cycle given by rule (b), where an isolated vertex without any arcs

on it is considered a directed 1-path;

(5) B is the set of tails of the directed paths in Γ.

Proof. Since B is a ZFS-Zoc, each vertex in B is blue initially and each vertex outside

B turns blue exactly once, implying (1) and (2). A directed odd cycle given by rule (b)

always forms a component itself in Γ, and each vertex of it has out-degree 1. If x → y1

and x→ y2 are arcs in Γ, then y1 and y2 are two white neighbors of x and rule (a) cannot

apply. Therefore (3) holds. For (4), since every vertex of Γ has in-degree at most 1

and out-degree 1, Γ is a disjoint union of directed cycles and directed paths. Since each

directed n-cycle with n ≥ 3 cannot be obtained by rule (a), it must be a directed odd

cycle given by rule (b). Finally, for (5), B corresponds to those vertices with in-degree

0, which is the set of tails of each directed path in Γ.

In contrast to the color-change rule on simple graphs, a vertex does not need to be

blue to start its force. Let (Xi → Yi)si=1 be a chronological list for Zoc on a loop graph G.

By Proposition 2.2.4, each vertex x ∈ V (G) is in at most one Xi for some i. If x ∈ Xi is
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blue already before Xi → Yi applies, or x ∉Xi for any i, then x is said to be blue-first.

Proposition 2.2.5. Let ζ be a ZFP-Zoc on a loop graph G and π a maximal chain.

Then the following properties hold:

(1) if π is a directed 1-cycle on the vertex x, then x is not blue-first and has a loop in

G;

(2) if π is a directed 2-cycle, then one of its two vertices is blue-first while the other is

not, and the vertex which is not blue-first has no loop in G;

(3) if π is a directed odd cycle given by rule (b), then every vertex of π is not blue-first

and has no loop in G;

(4) if x, y are in different maximal chains and x, y are not blue-first, then there is no

edge between x and y in G.

Proof. Directed 1-cycles and directed 2-cycles can only be given by rule (a). If π is a

directed 1-cycle given by {x} → {x} in the chronological list, then x is not yet blue when

this happens, and x has a loop in G by rule (a). If π is a directed 2-cycle given by

{x} → {y} first and {y} → {x} later in the chronological list, then x is not blue-first

while y is, and x has no loop in G by rule (a). Rule (b) gives (3) immediately. If x

and y are as in (4) but x is adjacent to y in G, then neither of them can turn blue, a

contradiction.

Proposition 2.2.6. If (Xi → Yi)si=1 is a chronological list for Zoc on G, then for i < j

there are no edges between Xi and Yj.

Proof. At the i-th step, Yj is not yet blue, since i < j. Suppose there is an edge between

Xi and Yj. Then Yj provides extra white neighbors to Xi other than Yi. Thus Xi would

not have a unique white neighbor, nor be an isolated loopless odd cycle. Hence Xi → Yi

is impossible, a contradiction.
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Proposition 2.2.7. Let ζ be a ZFP-Zoc on G with initial blue set B and chronological

list (Xi → Yi)si=1. Then B = V (G) ∖ ⋃
s
i=1 Yi. Also, (Yi → Xi)

1
i=s is again a ZFP-Zoc,

starting with the initial blue set B′ = V (G) ∖ ⋃
s
i=1Xi. And B′ is also a ZFS-Zoc on G

with ∣B∣ = ∣B′∣. This new zero forcing process is the reversal of ζ.

Proof. The initial blue set B of a chronological list is those vertices not being changed

to blue, so B = V (G)∖⋃
s
i=1 Yi. By Proposition 2.2.4, Xi’s are mutually disjoint sets, and

so are the Yi’s. Also, ∣Xi∣ = ∣Yi∣ for each i by definition. Hence ∣B∣ = ∣B′∣ by the choice

of B′. To see the reversal works, we claim that Yi → Xi is a legal move under CCR-Zoc

when B′ = ⋃
s
j=i+1Xj is all blue. At this situation, ⋃ij=1Xj is the set of white vertices,

and Proposition 2.2.6 states that Xi is the only white set connected to Yi. Therefore,

Yi →Xi works consecutively from s to 1.

We note that the proof of Proposition 2.2.7 is analogous to that in [3] for simple

graphs.

Theorem 2.2.8. For any loop graph G and any field F with charF ≠ 2, MF (G) ≤

Zoc(G) ≤ Z(G).

Proof. Since the color change rules for Z(G) are a subset of the color change rules for

Zoc(G), Zoc(G) ≤ Z(G).

Let n = ∣V (G)∣, k = Zoc(G), and B a ZFS-Zoc of cardinality k. Also let (Xi → Yi)si=1

be the corresponding chronological list with s steps. Let A ∈ SF (G) be a matrix with

null(A) = MF (G). Apply row/column permutations on A so that the columns follow

the order of Xi’s and the rows follow the order of Yi’s, and put all remaining columns to

the right and rows to the bottom. Note that the permutations will not change the rank,
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but the new matrix will be of the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A[Y1,X1] ? ?

O A[Y2,X2] ?

⋮ ⋱ ⋮

O ⋯ O A[Ys,Xs]

? ? ⋯ ?

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where A[Yj,Xi] is the submatrix of A induced by rows in Yj and columns in Xi.

This contains an upper-triangular block matrix, since Proposition 2.2.6 ensures that

A[Yj,Xi] = O if i < j. Every diagonal block A[Yi,Xi] is either a 1 × 1 nonzero matrix,

or a matrix described by a loopless odd cycle, which is nonsingular by Remark 2.1.3.

This means the rank of A is at least ∣ ⋃
s
i Yi∣ = n − k. Therefore MF (G) = null(A) ≤ k =

Zoc(G).

The proof of Theorem 2.2.8 is based on Remark 2.1.3, and that is why we need

charF ≠ 2.

Corollary 2.2.9. For any loop configuration G of a complete graph or a cycle, MR(G) =

Zoc(G).

Proof. If there are at least 3 nonloop vertices {x, y, z} on a loop configuration G of a

complete graph, then V (G) ∖ {x, y, z} is a ZFS-Zoc on G. If G is a loopless odd cycle,

then the empty set is a ZFS-Zoc on G. Together with Proposition 2.1.1 and Proposition

2.1.2, MR(G) = Zoc(G) for these loop graphs.

We end this section with Example 2.2.10, showing the gap Z(G) − Zoc(G) can be

arbitrarily large for loop graphs.

Example 2.2.10. Let Gn = K1⋁(nK3) be the simple graph defined as the join of a

vertex and n copies of K3, the complete graph on 3 vertices. Figure 2.2 shows G2.

Let G0
n be the loop configuration of Gn without any loop and x ∈ V (G0

n) the vertex
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Figure 2.2 The graph K1⋁(2K3) for Example 2.2.10

adjacent to all other vertices. Then Zoc(G0
n) = 1, since {x} is a ZFS-Zoc on G0

n. However,

Z(G0
n) = n + 1. To see this, observe that G0

n − x is n copies of the loopless odd cycle C0
3.

In G0
n each copy of C0

3 needs at least one blue vertex, for otherwise there is no way to

turn this copy blue; taking only these n blue vertices does not allow forcing to begin,

but these n vertices along with x becomes a (conventional) zero forcing set on G0
n. So

n + 1 blue vertices is the minimum requirement. Also, MR(G0
n) = 1 = Zoc(G0

n), since it

does not contain a unique spanning composite cycle (see [7]).

2.3 Enhanced odd cycle zero forcing number Ẑoc(G)

The enhanced zero forcing number demonstrates that an upper bound for loop graphs

can lead to an upper bound for simple graphs. This also applies to the odd cycle zero

forcing number.

Definition 2.3.1. Let G be a simple graph. Running over all loop configurations G of

G, the enhanced odd cycle zero forcing number Ẑoc(G) for the simple graph G is

Ẑoc(G) = max
G

Zoc(G).

The proof of the next theorem follows that of Corollary 2.24 in [4].

Theorem 2.3.2. For any simple graph G and any field F with charF ≠ 2, MF (G) ≤

Ẑoc(G) ≤ Ẑ(G).

Proof. Let A be a matrix in SF (G) such that null(A) = MF (G). Following the zero-

nonzero pattern on the diagonal entries of A, A must fall into SF (G) for some loop
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configuration G of G. As a consequence,

MF (G) = null(A) ≤MF (G) ≤ Zoc(G) ≤ Ẑoc(G),

by Theorem 2.2.8. And again by Theorem 2.2.8, Zoc(G) ≤ Z(G), so Ẑoc(G) ≤ Ẑ(G) by

definitions.

1

2

3

4 5 6

7

8

9

Figure 2.3 Labeled K3,3,3

Example 2.3.3. Let G be the complete tripartite graph K3,3,3 (as a simple graph),

which is shown in Figure 2.3. For this graph, we show that Z(G) = 7 = Ẑ(G) but

Ẑoc(G) = 6 =MR(G).

We start by showing Z(G) = 7 = Ẑ(G). First consider the simple graph G and a

zero forcing set B on G. If ∣B⋂{1,2,3}∣ < 2, then there is no way to turn all of {1,2,3}

blue. So each of the clusters {1,2,3}, {4,5,6}, and {7,8,9} contains at least 2 blue

vertices. But 6 vertices with 2 in each clusters is not enough to make V (G) all blue.

Therefore, {1,2,3,4,5,7,8} is a minimum zero forcing set on G, and Z(G) = 7. This

same argument also works for the zero forcing number of the loop graph G0, where G0

is the loop configuration of G without any loop. So 7 = Z(G0) ≤ Ẑ(G) ≤ Z(G) = 7 and

Ẑ(G) = 7 also.

Next we show Ẑoc(G) = 6 =MR(G). Let G be a loop configuration of K3,3,3. Assume

each vertex in {1,2,3} has a loop. Then the initial blue set B = {4,5,6,7,8,9} can

make all vertices blue by rule (a), so Zoc(G) ≤ 6 in this case. Similarly, {1,2,3} can be
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replaced by the other clusters {4,5,6} and {7,8,9}. So now assume at least one vertex

in each cluster does not have a loop, say 1, 4, and 7. In this case, {2,3,5,6,8,9} forms a

ZFS-Zoc, since {1,4,7} forms a loopless odd cycle and rule (b) applies. Throughout all

cases, Ẑoc(G) ≤ 6. On the other hand, MR(G) ≥ 6, because its adjacency matrix over R

has nullity 6. Therefore, Ẑoc(G) = 6 =MR(G).

Finally, if we consider the adjacency matrix of G over F2, the field of two elements,

then its nullity is 7 instead of 6. So 7 ≤MF2(G) ≤ Ẑ(G) = 7. The discrepancy between

Ẑ(G) and Ẑoc(G) is because Ẑ(G) ≥MF (G) works for an arbitrary field F , but Ẑoc(G) ≥

MF (G) works only when charF ≠ 2.

2.4 Graph blowups

The simple graph K3,3,3 in Example 2.3.3 demonstrates a relation between the zero

forcing number for simple graphs and that for loop graphs. Let C0
3 be the loopless odd

cycle on 3 vertices. The simple graph K3,3,3 can be viewed as the simple graph obtained

from C0
3 by replacing each vertex with a cluster of t = 3 isolated vertices and replacing

each edge with a complete bipartite graph joining the corresponding clusters. Example

2.3.3 satisfies

Z(K3,3,3) = Ẑ(K3,3,3) = (t − 1) × ∣V (C0
3)∣ +Z(C0

3)

and

Ẑoc(K3,3,3) = (t − 1) × ∣V (C0
3)∣ +Zoc(C

0
3)

with t = 3.

The transformation of C0
3 to K3,3,3 is called a blowup. In this section, we discuss how

graph blowups can bridge loop graphs and simple graphs.

Definition 2.4.1. Let G be a loop graph with V (G) = {vi}ni=1, and (t1, t2, . . . , tn) a

sequence of n positive integers. The (t1, t2, . . . , tn)-blowup of G is the simple graph
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


0 1 0
1 4 7
0 7 0







0 0 1 1 1 0
0 0 1 1 1 0
1 1 4 4 4 7
1 1 4 4 4 7
1 1 4 4 4 7
0 0 7 7 7 0




loop graph G simple graph H

A ∈ SF (G) A′ ∈ SF (H)

(2, 3, 1)-blowup

(2, 3, 1)-blowup

Figure 2.4 An illustration of the blowup of graphs and matrices

obtained from G by replacing vi with a cluster Vi of ti vertices and for each edge vivj

(i = j is possible), joining every vertex of Vi with every vertex of Vj.

Definition 2.4.2. Let A = [ai,j] be a symmetric matrix indexed by {vi}ni=1. and

(t1, t2, . . . , tn) a sequence of n positive integers. Denote n′ = ∑
n
i=1 ti. The (t1, t2, . . . , tn)-

blowup of A is the n′ × n′ matrix obtained from A by replacing the i, j-entry ai,j of A

with ai,jJti,tj , where Jti,tj is the ti × tj all one matrix.

These definitions are illustrated in Figure 2.4.

Lemma 2.4.3. Let G be a loop graph with V (G) = {vi}ni=1, and (t1, t2, . . . , tn) a sequence

of n positive integers. Let H be the (t1, t2, . . . , tn)-blowup of G. Then mrF (H) ≤ mrF (G)

and MF (H) ≥ ∑
n
i=1(ti − 1) +MF (G) for any field F .

Proof. Let A be a matrix in SF (G) and A′ the (t1, t2, . . . , tn)-blowup of A. Then A′ is a

matrix in SF (H). Also, since deleting repeated rows and columns does not change the

rank, rank(A) = rank(A′). Therefore, mrF (H) ≤ mrF (G) and MF (H) ≥ ∑
n
i=1(ti − 1) +

MF (G) for any field F .

Lemma 2.4.4. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence of n

positive integers with ti ≥ 2 for all i. Let H be the (t1, t2, . . . , tn)-blowup of G. Then

Z(H) = Z(H′) =
n

∑
i=1

(ti − 1) +Z(G),
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where H′ is the loop configuration of H such that every vertex in a cluster corresponding

to a clique has a loop while the others do not have a loop.

The second equality also holds if Z is replaced by Zoc. That is,

Zoc(H
′) =

n

∑
i=1

(ti − 1) +Zoc(G).

Proof. We consider Z(H) first.

Let V (G) = {vi}ni=1 and Vi the cluster of ti vertices. On the simple graph H, if there

are two white vertices in a cluster Vi, then there is no way to make Vi all blue. So in

order to be a zero forcing set on H, each Vi has at most one white vertex. This ensures

Z(H) ≥ ∑
n
i=1(ti−1). Say the cluster Vi is blue if all its vertices is blue, and Vi is one-white

if one of its vertices is white. Then Z(H) will be ∑
n
i=1(ti − 1) plus the minimum number

of blue clusters.

Assume each Vi is either blue or one-white. Denote Vi → Vj if x → y happens on H

for some x ∈ Vi and y ∈ Vj. Since ti ≥ 2, each one-white cluster contains at least one blue

vertex. Suppose vi has no loop in G, then Vi → Vj on H does not require Vi to be blue;

similarly, vi → vj on G does not require vi to be blue. Suppose vi has a loop in G, then

Vi → Vi can happen when all other neighbors are blue already; this is the same case for

vi → vi. Therefore, when each cluster is either blue or one-white, Vi → Vj on H if and

only if vi → vj on G. So the minimum number of blue clusters is Z(G) and

Z(H) =
n

∑
i=1

(ti − 1) +Z(G).

The same argument works when H is replaced by H′. It also works when rule (b)

comes in. Suppose that {vi}i∈α forms a loopless odd cycle on G for some index set α

and rule (b) can be applied on it. Then at this step each cluster in {Vi}i∈α is one-

white and the only white vertices in each of them form a loopless odd cycle on H′. So

Zoc(H′) = ∑
n
i=1(ti − 1) +Zoc(G) holds.
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Lemma 2.4.5. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence of n

positive integers with ti ≥ 3 for all i. Let H be the (t1, t2, . . . , tn)-blowup of G. Then

Ẑoc(H) =
n

∑
i=1

(ti − 1) +Zoc(G).

Proof. Let h = ∑
n
i=1(ti − 1) +Zoc(G). By Lemma 2.4.4, at least one loop configuration H′

of H has Zoc(H′) = h, so it is enough to show that any loop configuration H of H has

Zoc(H) ≤ h.

Let H be a loop configuration of H and B be a minimum ZFS-Zoc of G. We adopt

the notation from Lemma 2.4.4. We mark Vi blue if vi ∈ B and one-white if vi ∉ B;

whenever a cluster Vi is marked one-white, we pick the only white vertex to be a nonloop

vertex, unless every vertex in Vi has a loop. Call this set B′. Starting with B′, we can

do the corresponding forces Vi → Vj whenever vi → vj happens in G. If rule (b) never

applies in G, then B′ is a ZFS-Zoc of H with ∣B′∣ = h and we are done. So assume rule

(b) first happens at some step, and it applies to a loopless odd cycle C on G. Denote

V (C) = {vi}i∈α for some index set α. If every cluster Vi in {Vi}i∈α contains a nonloop

vertex on the loop configuration H, then by the choice of B′ there is a loopless odd cycle

on H and the process continues. Now assume at least one cluster Va has all its vertices

with loops. Say vb and vc are the two neighbors of va in C. We modify B′ by marking Vb

and Vc blue, and setting all vertices in Va as white. This modification does not increase

the number of blue vertices, since marking Vb and Vc blue add two blue vertices, but

setting all Va white loses at least two blue vertices by the fact ta ≥ 3. Note that Va is an

independent set since C is loopless, and all its vertices has loops. By starting with the

new B′, the same process can go on until rule (b) applies to C. At this step, va has only

two white neighbors vb and vc; this means at the stage where rule (b) was applied in G

every vertex in Va can force itself blue, since Vb and Vc are blue initially. Now by applying

rule (a) only, every cluster in {Vi}i∈α turns blue eventually, and the process continues.

Since all loopless odd cycles given by rule (b) are mutually isolated by Proposition 2.2.5,
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we can do the modification separately, and find a ZFS-Zoc of H with cardinality less than

or equal to h. Therefore, Zoc(H) ≤ h and Ẑoc(H) = h.

Remark 2.4.6. In Lemma 2.4.5, the assumption ti ≥ 3 for all i can be relaxed to ti ≥ 3

whenever vi has no loop in G and ti ≥ 2 otherwise.

Theorem 2.4.7. Let G be a loop graph on n vertices and (t1, t2, . . . , tn) a sequence of n

positive integers. Let H be the (t1, t2, . . . , tn)-blowup of G. If MF (G) = Z(G) for some

field F and ti ≥ 2 for all i, then

MF (H) = Z(H) = Ẑ(H) =
n

∑
i=1

(ti − 1) +MF (G).

If MF (G) = Zoc(G) for some field F with charF ≠ 2 and ti ≥ 3 for all i, then

MF (H) = Ẑoc(H) =
n

∑
i=1

(ti − 1) +MF (G).

Proof. This immediately comes from Lemma 2.4.3, Lemma 2.4.4, Lemma 2.4.5, and

Theorem 2.2.8.

Corollary 2.4.8. Let G be a tree, a cycle, or a complete graph, and G its loop configu-

ration with V (G) = {vi}ni=1. Let H be the (t1, t2, . . . , tn)-blowup of G with ti ≥ 3 for all i.

Then MR(H) = Ẑoc(H). Moreover, MR(H) = Z(H) if G is a tree.

Proof. If G is a tree, then MR(G) = Z(G) [5]; if G is a cycle or a complete graph, then

MR(G) = Zoc(G) by Corollary 2.2.9. By applying Theorem 2.4.7, the equality holds.

Example 2.3.3 together with Lemma 2.4.4 and Theorem 2.4.7 also provide a family

of simple graphs with large Ẑ(G) − Ẑoc(G).

Corollary 2.4.9. Let Gn = K1⋁(nK3) be the simple graph in Example 2.2.10 and G0
n

the loop configuration of Gn without any loop. Let Hn be the (3,3, . . . ,3)-blowup of Gn.

Then

Ẑoc(Hn) = 2 ⋅ ∣V (G0
n)∣ + 1 and Ẑ(Hn) = 2 ⋅ ∣V (G0

n)∣ + n + 1.
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2.5 Graph complement conjecture for Ẑoc(G)

The graph complement conjecture for the maximum nullity (GCC-M) for simple

graphs [2] states that

MF (G) +MF (G) ≥ n − 2,

where G is the complement of G. Corollary 2.5.1 below shows GCC-M is true for most

graph blowups.

Corollary 2.5.1. Let G be a loop graph and H the (t1, t2, . . . , tn)-blowup of G. If ti ≥ 2

for all i, then GCC-M is true for H over any field F . That is,

MF (H) +MF (H) ≥ ∣V (H)∣ − 2.

Proof. Notice that H is the (t1, t2, . . . , tn)-blowup of G, where G is the complement of

G as loop graphs; that is, there is an edge (or a loop) between vi and vj in G if and only

if there is no edge (or no loop) between vi and vj in G.

By Lemma 2.4.3, MF (H) ≥ 1
2 ∣V (H)∣ since ti ≥ 2 for all i. Similarly, MF (H) ≥

1
2 ∣V (H)∣. So

MF (H) +MF (H) ≥ ∣V (H)∣ > ∣V (H)∣ − 2,

and GCC-M holds for H.

If β is a graph parameter for simple graphs, the graph complement conjecture for β

(GCC-β) is stated as

β(G) + β(G) ≥ n − 2.

In [9], GCC-tw, GCC-Z+, and GCC-Z are proven to be true, where tw is the tree-width,

Z+ is the positive semidefinite zero forcing number, and Z is the zero forcing number for

simple graphs. The relation between these parameters can be found in Fig. 1.1 of [4].

We claim that GCC-Z+ implies GCC-Ẑoc, so GCC-Ẑoc is also true. We need an

intermediate parameter. The loop zero forcing number Z`(G) for simple graphs G is
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defined as Z(G), where G is the loop configuration of G such that isolated vertices

have no loop while the others have a loop [4]. Since rule (b) can never apply on G,

Z(G) = Zoc(G) and Z`(G) = Zoc(G) ≤ Ẑoc(G). Also, it is known that Z+(G) ≤ Z`(G) [4].

Therefore, Z+(G) ≤ Ẑoc(G) for every simple graph G, which means GCC-Z+ implies

GCC-Ẑoc.

2.6 Examples with Ẑoc(G) −MR(G) large

A 5-sun, H5, is a simple graph obtained from C5 by appending a leaf to each vertex.

It is known that MR(G) = 2 = Ẑ(G) but Z(G) = 3 [1, 4]. Thus Ẑoc(G) = 2, by Theorem

2.2.8. To get a discrepancy between Ẑoc(G) and MR(G), we insert one more leaf to each

of the leaves of H5 and call it a long 5-sun, denoted as LH5. A long 5-sun sequence of

length n is the simple graph shown in Figure 2.5, which concatenates n copies of LH5.

Proposition 2.6.1 shows that for this family of graphs and hence in general for simple

graphs, Ẑoc(G) −MR(G) can be arbitrarily large.

· · ·

v1,1

v1,2

v1,3 v1,4

v2,2

v2,1

v2,3 v2,4

v3,2 vn,2

vn,1

vn,3 vn,4

vn,5

Figure 2.5 A sequence of long 5-sun

Proposition 2.6.1. Let Ln be the long 5-sun sequence of length n described above. Then

MR(Ln) = n + 1 and Ẑoc(Ln) = Ẑ(Ln) = Z(Ln) = 2n + 1.

Proof. The cut-vertex reduction formula [6] states that

MR(G1 ⊕v G2) = max{MR(G1) +M
R(G2) − 1,MR(G1 − v) +M

R(G2 − v) − 1},
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where G1⊕vG2 is obtained from G1 and G2 by identifying the vertex v on each of them.

Suppose x is a leaf on a graph G and y is the only neighbor of x. Then by applying the

formula on y, one immediate observation is MR(G) ≥MR(G − x); additionally, if y is of

degree 2, then MR(G) =MR(G−x). Therefore, MR(L1) =MR(H5) = 2. Now write Ln as

Ln−1⊕v L1, where v is the vertex vn−1,5 in Ln−1 and a leaf in L1. Since v is a leaf on Ln−1

and on L1, the observation reduces the formula to be MR(Ln) =MR(Ln−1)+MR(L1)−1 =

MR(Ln−1) + 1. Inductively, MR(Ln) = n + 1.

For zero forcing numbers, the set {v1,1, v1,2, v1,3}⋃{vi,1, vi,3}ni=2 labeled in Figure 2.5

forms a zero forcing set on the simple graph Ln. So Z(Ln) ≤ 2n + 1.

On the other hand, we show Zoc(L`n) = 2n + 1, where L`n is the loop configuration of

Ln so that each vertex has a loop. First we make some observations. By Proposition

2.2.5, the maximal chains on L`n can only be directed 1-cycles or directed paths, and

the number of directed paths is the cardinality of the ZFS-Zoc. Even more, there are no

edges between any two distinct directed 1-cycles. Let x ∈ V (L`n) be a pendent vertex,

which means x has only one neighbor y other than itself. Let πx and πy be the maximal

chain containing x and y respectively, where πx = πy is possible. By the structure of L`n,

if πx is a directed path, then x is an endpoint of πx; if πx is a directed 1-cycle, then πy

must be a directed path and y is an endpoint of πy. In either case, {x, y} must contain

an endpoint for some maximal chain. Now we claim Zoc(L`n) ≥ 2n+ 1 by induction on n.

For n = 1, there are 5 pendent vertices in L`1. Each directed path has only 2 endpoints, so

⌈52⌉ = 3 directed paths are needed. Assume Zoc(L`n−1) ≥ 2n − 1. Note that L`n is obtained

from L`n−1 by attaching the last copy of L`1, where V (L`n−1)⋂V (L`1) = {vn,2}. There are

still 4 pendent vertices on V (L`1). Only one of the 4 vertices can combine with a directed

path from L`n−1. So at least 2n−1+ ⌈4−12 ⌉ = 2n+1 directed paths are needed for L`n. This

means

2n + 1 ≤ Zoc(L
`
n) ≤ Ẑoc(Ln) ≤ Ẑ(Ln) ≤ Z(Ln) ≤ 2n + 1.

Hence every inequality is an equality.
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CHAPTER 3. USING A NEW ZERO FORCING PROCESS

TO GUARANTEE THE STRONG ARNOLD PROPERTY

A paper published in Linear Algebra and its Applications

Jephian C.-H. Lin

Abstract

The maximum nullity M(G) and the Colin de Verdière type parameter ξ(G) both

consider the largest possible nullity over matrices in S(G), which is the family of real

symmetric matrices whose i, j-entry, i ≠ j, is nonzero if i is adjacent to j, and zero

otherwise; however, ξ(G) restricts to those matrices A in S(G) with the Strong Arnold

Property, which means X = O is the only symmetric matrix that satisfies A ○X = O,

I ○X = O, and AX = O. This paper introduces zero forcing parameters ZSAP(G) and

Zvc(G), and proves that ZSAP(G) = 0 implies every matrix A ∈ S(G) has the Strong

Arnold Property and that the inequality M(G) − Zvc(G) ≤ ξ(G) holds for every graph

G. Finally, the values of ξ(G) are computed for all graphs up to 7 vertices, establishing

ξ(G) = ⌊Z⌋(G) for these graphs.

3.1 Introduction

A minimum rank problem for a graph G is to determine what is the smallest possible

rank, or equivalently the largest possible nullity, among a family of matrices associated
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with G. One classical way to associate matrices to a graph G is through S(G), which

is defined as the set of all real symmetric matrices whose i, j-entry, i ≠ j, is nonzero

whenever i and j are adjacent inG, and zero otherwise. Note that the diagonal entries can

be any real number. Another association is S+(G), which is the set of positive semidefinite

matrices in S(G). Thus, the maximum nullity M(G) and the positive semidefinite

maximum nullity M+(G) are defined as

M(G) = max{null(A) ∶ A ∈ S(G)}, and

M+(G) = max{null(A) ∶ A ∈ S+(G)}.

The classical minimum rank problem is a branch of the inverse eigenvalue problem,

which asks for a given multi-set of real numbers, is there a matrix in S(G) such that

its spectrum is composed of these real numbers. If λ is an eigenvalue of some matrix

A ∈ S(G), then its multiplicity should be no higher than M(G), for otherwise A −

λI has nullity higher than M(G). Similarly, M+(G) provides an upper bound for the

multiplicities of the smallest and the largest eigenvalues. Also, M+(G) is closely related

to faithful orthogonal representations [12].

Other families of matrices are defined through the Strong Arnold Property. A matrix

A is said to have the Strong Arnold Property (or SAP) if the zero matrix is the only

symmetric matrix X that satisfies the three conditions A ○ X = O, I ○ X = O, and

AX = O. Here I and O are the identity matrix and the zero matrix of the same size

as A, respectively, and ○ is the Hadamard (entrywise) product of matrices. By adding

the SAP to the conditions of the abovementioned families, the Colin de Verdière type

parameters are defined as

ξ(G) = max{null(A) ∶ A ∈ S(G),A has the SAP} [5], and

ν(G) = max{null(A) ∶ A ∈ S+(G),A has the SAP} [8].
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These parameters are variations of the original Colin de Verdière parameter µ(G) [7],

which is defined as the maximum nullity over matrices A such that

• A ∈ S(G) and every off-diagonal entry of A is non-positive (called a generalized

Laplacian of G),

• A has exactly one negative eigenvalue including the multiplicity, and

• A has the SAP.

In order to see how the SAP makes a difference between these parameters, we define

Mµ(G) as the maximum nullity of the same family of matrices by ignoring the SAP,

i.e. the maximum nullity of a generalized Laplacian A of G such that A has exactly one

negative eigenvalue.

The SAP gives ξ(G), ν(G), and µ(G) nice properties. For example, they are minor

monotone [12]. A graph H is a minor of a graph G if H can be obtained from G by a

sequence of deleting edges, deleting vertices, and contracting edges; a graph parameter ζ

is said to be minor monotone if ζ(H) ≤ ζ(G) whenever H is a minor of G. By the graph

minor theorem (e.g., see [10]), for a given integer d and a minor monotone parameter ζ,

the minimal forbidden minors for ζ(G) ≤ d consist of only finitely many graphs. Here

ζ can be ξ, ν or µ. More specifically, µ(G) ≤ 3 if and only if G is a planar graph [18],

which is characterized by the forbidden minors K5 and K3,3.

However, the SAP also makes the Colin de Verdière type parameters less controllable

by the existing tools. For example, zero forcing parameters, which will be defined in

Section 3.1.2, were used extensively as a bound for the minimum rank problem. For the

classical zero forcing number Z(G), it is known that M(G) ≤ Z(G) for all graphs [2];

and M(G) = Z(G) when G is a tree or ∣V (G)∣ ≤ 7 [2, 9]. An analogy for ξ(G) is the

minor monotone floor of the zero forcing number, which is denoted as ⌊Z⌋(G) and will

be defined in Section 3.4. It is known that ξ(G) ≤ ⌊Z⌋(G) for all graphs [4]. The similar
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statement ξ(G) = ⌊Z⌋(G) is not always true when G is a tree [4], and no results about

ξ(G) and ⌊Z⌋(G) for small graphs are known.

The main goal of this paper is to establish a connection between zero forcing param-

eters and the SAP, and derive consequences. This leads to some questions. Does some

graph structure guarantee that every A ∈ S(G) has the SAP? Thus, the maximum nullity

does not change when the SAP condition is added. Specifically, when A is a generalized

Laplacian of some graph G and has exactly one negative eigenvalue, some graph struc-

tures do guarantee that A has the SAP [15,21]; however, general results on this problem

remain unknown. On the other hand, is there a strategy to perturb any given matrix

such that it guarantees the SAP? Thus, the rank changed by the perturbation gives an

upper bound for M(G) − ξ(G).

In Section 3.2, we introduce a new parameter ZSAP(G) and its variants Z`
SAP and

Z+

SAP, and prove in Theorem 3.2.6 that under the condition ZSAP(G) = 0, every matrix

A ∈ S(G) has the SAP. Thus, ξ(G) =M(G), ν(G) =M+(G), and µ(G) =Mµ(G) when

ZSAP(G) = 0, so finding the values of Colin de Verdière type parameters is equivalent to

finding the values of the corresponding parameters. Table 3.1 in Section 3.2.2 indicates

that there are actually a considerable proportion of graphs that have this property.

In Section 3.3, another parameter Zvc(G) and its variant Z`
vc(G) are defined, and

Theorem 3.3.2 states that M(G) − ξ(G) ≤ Zvc(G) for every graph G. With the help

of ZSAP(G), Zvc(G), and some existing theorems, Section 3.4 provides the result that

ξ(G) = ⌊Z⌋(G) for graphs G up to 7 vertices.

All parameters introduced in this paper and their relations are illustrated in Figure

3.1. A brief description of the related theorems is given on the sides. A line between two

parameters means the lower one is less than or equal to the upper one.

Throughout the paper, the neighborhood of a vertex i in a graph G is denoted as

NG(i), while the closed neighborhood is denoted as NG[i], which equals NG(i) ∪ {i}.

The induced subgraph on a vertex set W of G is denoted as G[W ]. If A is a matrix, U
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∣E(G)∣

ZSAP

Z`
SAP

Z+

SAP

0

∣V (G)∣

Zvc

Z`
vc

0

ZSAP(G) = 0 implies
every A ∈ S(G) has the SAP
Theorem 3.2.6
Z`

SAP(G) = 0 implies
every A ∈ S`(G) has the SAP
Theorem 3.2.16
Z+

SAP(G) = 0 implies
every A ∈ S+(G) has the SAP
Theorem 3.2.16

M(G) −Zvc(G) ≤ ξ(G)

Theorem 3.3.2

M+(G) −Z`
vc(G) ≤ ν(G)

Theorem 3.3.6

Figure 3.1 Parameters introduced in this paper

and W are subsets of the row and column indices of A respectively, then A[U,W ] is the

submatrix of A induced on the rows of U and columns of W ; if U and W are ordered

sets, then permute the rows and columns of this submatrix accordingly.

3.1.1 SAP system and its matrix representation

Let G be a graph on n vertices, and m = ∣E(G)∣. In order to see if a matrix A ∈ S(G)

has the SAP or not, the matrix X can be viewed as a symmetric matrix with m variables

at the positions of non-edges so that X satisfies A ○X = I ○X = O. Next, AX = O leads

to n2 restrictions on the m variables, which forms a linear system. Call this linear system

the SAP system of A, which can also be written as an n2 ×m matrix.

Definition 3.1.1. Let G be a graph on n vertices, m = ∣E(G)∣, and A = [ai,j] ∈ S(G).

Given an order of the set of non-edges, the SAP matrix of A with respect to this order

is an n2 ×m matrix Ψ whose rows are indexed by pairs (i, k) and columns are indexed
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by the non-edges {j, h} such that

Ψ(i,k),{j,h} =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if k ∉ {j, h},

ai,j if k ∈ {j, h} and k = h.

The rows follow the order (i, k) < (j, h) if and only if k < h, or k = h and i < j; the

columns follow the order of the non-edges.

Remark 3.1.2. Let G be a graph, A ∈ S(G), and Ψ the SAP matrix of A with respect

a given order of the non-edges. The columns of Ψ correspond to the m variables in X,

and the row for (i, j) represents the equation (AX)i,j = 0. Therefore, a matrix has the

SAP if and only if the corresponding SAP matrix is full-rank.

The rows of Ψ can be partitioned into n blocks, each having n elements. The k-th

block are those rows indexed by (i, k) for 1 ≤ i ≤ n. Let vj be the j-th column of A.

For the submatrix of Ψ induced by the rows in the k-th block, the {j, h} column is vj if

k ∈ {j, h} and k = h, and is a zero vector otherwise. Equivalently, on the {i, j} column of

Ψ, the i-th block is vj, the j-th block is vi, while other blocks are zero vectors.

Example 3.1.3. Let G = P4 be the path on four vertices, with the vertices labeled by

{1,2,3,4} in the path order. Consider a matrix A ∈ S(G) and the matrix X with three

variables, as shown below.

AX =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4

1 −1 1 0 0

2 1 −1 1 0

3 0 1 −1 1

4 0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4

0 0 x{1,3} x{1,4}

0 0 0 x{2,4}

x{1,3} 0 0 0

x{1,4} x{2,4} 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The SAP matrix of A with respect to the order ({1,3},{1,4},{2,4}) is a matrix Ψ

representing the linear system for AX = O with three variables x{1,3}, x{1,4}, x{2,4}. For

convenience, write A = [v1 v2 v3 v4], where vj is the j-th column vector of A. Now
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AX = O means

∑
j∉NG[k]

x{j,k}vj = 0 for each k ∈ V (G).

Thus,

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
{1,3} x

{1,4} x
{2,4}

1 v3 v4 0

2 0 0 v4

3 v1 0 0

4 0 v1 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
{1,3} x

{1,4} x
{2,4}

(1,1) 0 0 0

(2,1) 1 0 0

(3,1) −1 1 0

(4,1) 1 −1 0

(1,2) 0 0 0

(2,2) 0 0 0

(3,2) 0 0 1

(4,2) 0 0 −1

(1,3) −1 0 0

(2,3) 1 0 0

(3,3) 0 0 0

(4,3) 0 0 0

(1,4) 0 −1 1

(2,4) 0 1 −1

(3,4) 0 0 1

(4,4) 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

3.1.2 Zero forcing parameters

On a graph G, the conventional zero forcing game (ZFG) is a color-change game such

that each vertex is colored blue or white initially, and then the color change rule (CCR)

is applied repeatedly. If starting with an initial blue set B ⊆ V (G) and every vertex turns

blue eventually, this set B is called a zero forcing set (ZFS). The zero forcing number is

defined as the minimum cardinality of a ZFS.
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Different types of zero forcing numbers are discussed in the literature (e.g., see [3, 4,

12]). Most of them serve as upper bounds of different types of maximum nullities. Here

we consider three types of the zero forcing numbers Z, Z`, Z+ with the corresponding

color change rules:

• (CCR-Z) If i is a blue vertex and j is the only white neighbor of i, then j may

turn blue.

• (CCR-Z`) CCR-Z can be used to perform a force. Or if i is a white vertex without

white neighbors and i is not isolated, then i may turn blue.

• (CCR-Z+) Let B be the set of blue vertices at some stage and W the vertices of a

component of G −B. CCR-Z is applied to G[B ∪W ] with blue vertices B.

When a zero forcing game is mentioned, it is equipped with a color change rule, and we

use i → j to denote a corresponding force (i.e. i forcing j to become blue). Note that

for CCR-Z`, it is possible to have i → i. Also, at the same stage, the color change rule

might be able to apply to different i and j (or W for CCR-Z+), so the player has the

choice to decide where to apply the rule, though the final coloring where no more color

change rules can be applied is always the same.

It is known [2–4] that M(G) ≤ Z(G), M+(G) ≤ Z+(G), and Z+(G) ≤ Z`(G) ≤ Z(G).

Denote S`(G) as those matrices in S(G) whose i, i-entry is zero if and only if vertex i is

an isolated vertex. Then every matrix A ∈ S`(G) has nullity at most Z`(G) [13].

All these results rely on Proposition 3.1.4.

Proposition 3.1.4. [2, 3, 13] Let G be a graph on n vertices. Suppose at some stage B

is the set of blue vertices.

• If i→ j under CCR-Z, then for any matrix A ∈ S(G) with column vectors {vs}ns=1,

∑s∉B xsvs = 0 implies xj = 0.
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• If i→ j under CCR-Z`, then for any matrix A ∈ S`(G) with column vectors {vs}ns=1,

∑s∉B xsvs = 0 implies xj = 0.

• If i→ j under CCR-Z+, then for any matrix A ∈ S+(G) with column vectors {vs}ns=1,

∑s∉B xsvs = 0 implies xj = 0.

3.2 SAP zero forcing parameters

In this section, we introduce a new parameter ZSAP(G) and prove that if ZSAP(G) = 0

then every matrix A ∈ S(G) has the SAP, which implies M(G) = ξ(G). We also introduce

similar parameters and results for other variants.

First we give two examples illustrating what we called in Definition 3.2.4 the forcing

triple and the odd cycle rule.

Example 3.2.1. Consider the graph P4. Let A be the matrix as in Example 3.1.3 and

vj its j-th column. In Example 3.1.3, we know the SAP matrix of A can be written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
{1,3} x

{1,4} x
{2,4}

1 v3 v4 0

2 0 0 v4

3 v1 0 0

4 0 v1 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since v4 is the only nonzero vector on the second block-row, x{2,4} must be 0 in this linear

system. Similarly, v1 is the only nonzero vector on the third block-row, so x{1,3} = 0.

Provided that x{1,3} = x{2,4} = 0, the structure on the first block-row forces x{1,4} = 0.

Since this argument holds for every matrix in S(G), every matrix in S(G) has the SAP.
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Example 3.2.2. Let G =K1,3. Consider the matrices A and X as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 a1 a2 a3

a1 d2 0 0

a2 0 d3 0

a3 0 0 d4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 x{2,3} x{2,4}

0 x{2,3} 0 x{3,4}

0 x{2,4} x{3,4} 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let vj be the j-th column of A. Then the SAP matrix of A with respect to the order

({2,3},{3,4},{2,3}) can be written as

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
{2,3} x

{3,4} x
{2,4}

1 0 0 0

2 v3 0 v4

3 v2 v4 0

4 0 v3 v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Recall that the row with index (i, j) is the i-th row in the j-th block. Thus the submatrix

induced by rows {(1,2), (1,3), (1,4)} is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 0 a3

a1 a3 0

0 a2 a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

whose determinant is always nonzero if a1, a2, a3 ≠ 0. This means the SAP matrix of A

is always full-rank, regardless the choice of A ∈ S(G). Hence every matrix A ∈ S(G) has

the SAP. The reason behind this is because a 3-cycle appears in G.

As shown in Example 3.2.1 and Example 3.2.2, some graph structures guarantee that

every matrix described by the graph has the SAP. This assurance is given by forcing

xe = 0 step by step or by the occurrence of some odd cycle inside G. Utilizing these

ideas, we design the SAP zero forcing game, where the information xe = 0 is stored by

coloring the non-edge e blue.
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Different from the conventional zero forcing game, the SAP zero forcing game is

coloring “non-edges” to be blue or white, instead of coloring vertices; also, a set of initial

blue non-edges is called a zero forcing set if every non-edge turns blue eventually by

repeated applications of the given color change rules.

Let G be a graph and i ∈ V (G). Recall that NG(i) is the neighborhood of i in G. For

BE a set of edges (2-sets), by considering ⟨BE⟩ as the graph with its edge set BE on the

required vertices, the notation N⟨BE⟩(i) denotes the vertices j with {i, j} ∈ BE.

The definition of ZSAP(G) uses the concept of local games, which we now define.

Definition 3.2.3. Let G be a graph with some non-edges BE colored blue, and k ∈ V (G).

The local game φZ(G,BE, k) is the conventional zero forcing game on G equipped with

CCR-Z and the initial blue set φk(G,BE) ∶= NG[k] ∪N⟨BE⟩(k). When Z is replaced by

another zero forcing rules, such as Z` or Z+, the setting remains the same but a different

rule is applied.

Definition 3.2.4. For a graph G, the SAP zero forcing number ZSAP(G) is the mini-

mum number of blue non-edges such that every non-edge will become blue by repeated

applications of the color change rule for ZSAP (CCR-ZSAP):

• Suppose at some stage, BE is the set of blue non-edges and {j, k} is a white non-

edge. If i→ j in φZ(G,BE, k) for some vertex i, then the non-edge {j, k} may turn

blue. This is denoted as (k ∶ i→ j).

• Let GW be the graph whose edges are the white non-edges. If for some vertex i,

GW [NG(i)] contains a component that is an odd cycle C, then all edges in E(C)

may turn blue. This is denoted as (i→ C).

The three vertices i, j, and k in the first rule are called a forcing triple; the second rule

is called the odd cycle rule.
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Note that a complete graph G =Kn is considered as having all non-edges blue initially,

so ZSAP(G) = 0. The odd cycle rule follows a similar idea from the odd cycle zero forcing

number [20].

Lemma 3.2.5. For any nonzero real numbers a1, a2, . . . , an with n odd, a matrix of the

form
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 0 ⋯ 0 an

a1 a3 0 0

0 a2 ⋱ ⋱ ⋮

⋮ 0 ⋱ an 0

0 ⋯ 0 an−1 a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is nonsingular.

Proof. Let A be a matrix of the described form. When n is odd,

det(A) = 2
n

∏
i=1

ai,

which is nonzero provided that ai’s are all nonzero. Hence A is nonsingular.

Theorem 3.2.6. Suppose G is a graph with ZSAP(G) = 0. Then every matrix in S(G)

has the SAP. Therefore, M(G) = ξ(G), M+(G) = ν(G), and Mµ(G) = µ(G).

Proof. Let A = [ai,j] ∈ S(G) with vj as the j-th column vector. Pick an order for the

set of non-edges, and let Ψ be the SAP matrix for A with respect to the given order.

Suppose x is a vector such that Ψx = 0. Then x = (xe)e∈E(G)
such that the entries of x

are indexed by the non-edges of G in the given order. We relate the SAP zero forcing

game to the zero-nonzero pattern of x.

Claim 1: Suppose at some stage, BE is the set of blue non-edges, and (k ∶ i → j) is

a forcing triple. Then xe = 0 for all e ∈ BE implies x{j,k} = 0.

To establish the claim, recall that the condition Ψx = 0 on those rows in the k-th

block means

∑
s∉NG[k]

x{s,k}vs = 0.
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Suppose xe = 0 for all e ∈ BE. Then this equality reduces to

∑
s∉NG[k]∪N

⟨BE ⟩
(k)

x{s,k}vs = 0.

Since by Definition 3.2.3 the set φk(G,BE) = NG[k] ∪ N⟨BE⟩(k) is exactly the set of

initial blue vertices in φZ(G,BE, k), the force i→ j in φZ(G,BE, k) implies x{j,k} = 0 by

Proposition 3.1.4.

Claim 2: Suppose at some stage, BE is the set of blue non-edges, and (i → C) is

applied by the odd cycle rule. Then xe = 0 for all e ∈ BE implies xe = 0 for every e ∈ E(C).

To establish the claim, let GW be the graph whose edges are the white non-edges at

this stage. Since (i→ C) is applied by the odd cycle rule, C is a component in GW [NG(i)]

and ∣V (C)∣ = d is an odd number. Following the cycle order, write the vertices in V (C)

as {ks}ds=1, and es = {ks, ks+1}, with the index taken modulo d.

Denote U = {(i, ks)}ds=1, W1 = {es}ds=1, and W2 as those white non-edges not in W1.

Now {BE,W1,W2} forms a partition of E(G). We have no control about Ψ[U,BE], but

will show Ψ[U,W1] is always nonsingular and Ψ[U,W2] = O. Consequently, xe = 0 for all

e ∈ BE implies xe = 0 for every non-edge e ∈W1 = E(C).

For each (i, ks) ∈ U , Ψ(i,ks),es−1 = ai,ks−1 and Ψ(i,ks),es = ai,ks+1 , while both of them are

nonzero; at the same time, Ψ(i,ks),e = 0 for all e ∈ W1 other than es−1 and es, since e is

not incident to ks. Therefore, Ψ[U,W1] is of the form described in Lemma 2.5, and it

must be nonsingular.

On the other hand, consider a non-edge {j, h} ∈ W2 and (i, ks) ∈ U . If ks ∉ {j, h},

then Ψ(i,ks),{j,h} = 0. If ks ∈ {j, h}, say ks = h, then j ∉ NG(i) (for otherwise ks has degree

at least 3 in GW [NG(i)] and the component containing ks cannot be an odd cycle); this

means {i, j} ∉ E(G) and Ψ(i,ks),{j,h} = ai,j = 0. Therefore, Ψ[U,W2] = O.

By the claims, ZSAP(G) = 0 means all of the xe will be forced to zero, so x = 0 is the

only vector in the right kernel of Ψ. This means Ψ is full-rank.

Since the argument works for every matrix A ∈ S(G), ZSAP(G) = 0 implies every
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matrix A ∈ S(G) has the SAP. Consequently, M(G) = ξ(G), M+(G) = ν(G), and

Mµ(G) = µ(G).

Remark 3.2.7. With and without the restriction of having the SAP, the inertia sets

that can be achieved by matrices in S(G) are considered in the literature (e.g., see [1,6]).

With the help of Theorem 3.2.6, if ZSAP(G) = 0, then these two inertia sets are the same.

Corollary 3.2.8. If G has no isolated vertices and G is a forest, then ZSAP(G) = 0 and

every matrix in S(G) has the SAP.

Proof. Suppose at some stage GW is the graph whose edges are the white non-edges.

Since G is a forest, GW always has a leaf k, unless GW contains no edges. Let j be

the only neighbor of k in GW , and let i be one of the neighbors of j in G. Since G has

no isolated vertices, i always exists. Thus, in the local game φZ(G,E(G) ∖E(GW ), k),

every vertex is blue except j, so i → j. Therefore, (k ∶ i → j) can be applied and {j, k}

turns blue. Continuing this process, all non-edges become blue, so ZSAP(G) = 0.

Note that the condition that G has no isolated vertices is crucial for Corollary 3.2.8.

For example, ZSAP(K1,n) > 0 when n ≥ 1. In fact, ZSAP(G) = 0 does not happen only

when G is a forest. Example 3.2.9 gives a graph G such that G is not a forest and

ZSAP(G) = 0. We will see in Table 3.1 that there are a considerable number of graphs

having the property ZSAP(G) = 0.

Example 3.2.9. Let G be the graph shown in Figure 3.2. Following the steps listed in

Figure 3.2, every non-edge turns blue, so ZSAP(G) = 0. Observe that at the beginning,

the graph GW of white non-edges is the same as G, and GW [NG(2)] is a 3-cycle C, so

one can also use the odd cycle rule to perform (2→ C). This will accelerate the process

but not change the result. By Theorem 3.2.6, every matrix A ∈ S(G) has the SAP, so

ξ(G) = M(G). Since the number of vertices is no more than 7, M(G) = Z(G) = 2 and

thus ξ(G) = 2.
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1 2

3

4

5

Step Forcing triple Forced non-edge

1 (2 ∶ 3→ 4) {2,4}
2 (4 ∶ 2→ 1) {4,1}
3 (5 ∶ 4→ 3) {5,3}
4 (3 ∶ 2→ 1) {3,1}
5 (5 ∶ 2→ 1) {5,1}

Figure 3.2 The graph G for Example 3.2.9 and the forcing process

Similar to Corollary 3.2.8, Remark 3.2.10 also provides some intuition of the SAP

zero forcing process.

Remark 3.2.10. Suppose at some stage BE is the set of blue non-edges on a graph G.

Let GW be the graph whose edges are the white non-edges. If for some vertex i, the

induced subgraph GW [NG(i)] has a leaf k with its only neighbor j in GW [NG(i)], then

(k ∶ i → j) can be applied on G, because in φZ(G,BE, k) every vertex in NG(i) is blue

except j.

This means whenever GW [NG(i)] contains a component that is a tree, every non-edge

in this tree can turn blue inductively by forcing triples. Consequently, if at some stage

(i → C) can be applied but some non-edges from C turns blue because of some forcing

triples or other odd cycle rules, all edges in E(C) can still turn blue by forcing triples,

but not by (i→ C).

Corollary 3.2.11. Let G be any graph with diameter 2 and maximum degree at most

3. Then ZSAP(G) = 0. In particular, when G is the Petersen graph, ZSAP(G) = 0, so

ξ(G) =M(G) = 5.

Proof. For every white non-edge {j, k}, there is at least one common neighbor i of j and

k, since the diameter is 2. By the assumption, degG(i) ≤ 3. Since i has at least two
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neighbors, degG(i) ≥ 2. If degG(i) = 2, then (k ∶ i → j). Suppose degG(i) = 3. On the

set NG(i), the white non-edges can form P2, P3, or C3. In the case of P2 and P3, all

non-edges in NG(i) turn blue by the argument in Remark 3.2.10. If it is C3, then apply

the odd cycle rule (i → C). Since this argument works for every white non-edge, all

non-edges can turn blue. Hence ZSAP(G) = 0.

Let G be the Petersen graph. Then G is a 3-regular graph with diameter 2. Thus,

ZSAP(G) = 0, and ξ(G) =M(G) by Theorem 3.2.6. It is known [2] that M(G) = 5.

In [5], it is asked if ξ(G) ≤ ξ(G − v) + 1 for every graphs G and every vertex v of G.

Theorem 3.2.6 answers this question in positive for a large number of graph-vertex pairs.

Corollary 3.2.12. Let G be a graph and v ∈ V (G). Suppose ZSAP(G − v) = 0. Then

ξ(G) ≤ ξ(G − v) + 1.

Proof. Since ZSAP(G − v) = 0, ξ(G − v) =M(G − v) by Theorem 3.2.6. Therefore,

ξ(G) ≤M(G) ≤M(G − v) + 1 = ξ(G − v) + 1,

where the inequality M(G) ≤M(G − v) + 1 is given in [11].

Example 3.2.13. Let G be one of the tetrahedron K4, cube Q3, octahedron G8, dodec-

ahedron G12, or icosahedron G20. Then, ZSAP(G) = 0. This is trivial for tetrahedron,

since it is a complete graph. The complement of an octahedron is three disjoint edges,

which is a forest, so ZSAP(G) = 0. For the other three graphs, pick one vertex i and look

at its neighborhood NG(i). The induced subgraph of G on NG(i) is either a 3-cycle or

a 5-cycle. Thus the odd cycle rule or the argument in Remark 3.2.10 could be applied,

and every non-edge in NG(i) turns blue. After doing this to every vertex, by picking one

vertex and look at its local game, all white non-edges incident to this vertex will turn

blue. Therefore, ξ(G) =M(G).

It is known [16] that M(K4) = 3 and M(Q3) = 4. Since the octahedron graph is

strongly regular, in [2] it shows 4 ≤M(G8); together with the fact Z(G8) ≤ 4, we know
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M(G8) = 4. For G12 and G20, the zero forcing numbers can be computed through the

computer program and both equal to 6, but the maximum nullity is not yet known.

Definition 3.2.14. Let G be a graph with some non-edges BE colored blue. The color

change rule for Z+

SAP (CCR-Z+

SAP) is the following:

• Let {j, k} be a non-edge. If i → j in φZ+(G,BE, k) for some vertex i, then the

non-edge {j, k} may turn to blue. This is denoted as (k ∶ i→ j).

• The odd cycle rule can be used to perform a force.

Similarly, the color change rule of Z`
SAP (CCR-Z`

SAP) is defined through the local game

φZ`
(G,BE, i). As usual, Z+

SAP(G) (respectively, Z`
SAP) is the minimum number of blue

non-edges such that every non-edge will become blue by repeated applications of CCR-

Z+

SAP (respectively, CCR-Z`
SAP).

Observation 3.2.15. For any graph G, Z+

SAP(G) ≤ Z`
SAP(G) ≤ ZSAP(G).

By a proof analogous to that of Theorem 3.2.6, we can establish Theorem 3.2.16.

Observe that Z`
SAP(G) = 0 implies Z+

SAP(G) = 0.

Theorem 3.2.16. Let G be a graph. If Z`
SAP(G) = 0, then every matrix in S`(G)

has the SAP. If Z+

SAP(G) = 0, then every matrix in S+(G) has the SAP. Therefore, if

Z+

SAP(G) = 0, then M+(G) = ν(G).

Corollary 3.2.17. Suppose G is a graph with Z+

SAP(G) = 0. Then ξ(G) ≥M+(G).

Example 3.2.18. Let G = Kn1,n2,...,np be a complete multi-partite graph with n1 ≥ n2 ≥

⋯ ≥ np and p ≥ 2. Denote n = ∑
p
t=1 nt. Then Z`

SAP(G) = Z+

SAP(G) = 0, so ν(G) =M+(G) =

n − n1 [12]. On the other hand, if n1 ≥ 4, then ZSAP(G) > 0, since none of the non-edges

in this part can turn blue.

Example 3.2.19. If T is a tree, then Z+

SAP(T ) = 0. However, not every tree T has

Z`
SAP(T ) = 0. For example, let G be the graph obtained from K1,4 by attaching four
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leaves to the four existing leaves. In this graph, only the non-edges incident to the center

vertex can turn blue by CCR-Z`
SAP, so Z`

SAP(G) > 0.

3.2.1 Graph join

Since the SAP zero forcing process uses a propagation on non-edges, it is interesting

to consider ZSAP(G) if G has two or more components; that is, G is a join of two or more

graphs.

Proposition 3.2.20. Let G and H be two graphs. Then

ZSAP(G ∨H) = ZSAP(G ∨K1) +ZSAP(H ∨K1).

Proof. Let v be the vertex corresponding to the K1 in G ∨K1. Denote E1 = E(G) and

E2 = E(H). Consider the mapping π ∶ V (G ∨ H) → V (G ∨K1) such that π(i) = i if

i ∈ V (G) and π(i) = v if i ∈ V (H). Fix a vertex u ∈ V (H), consider the mapping

π−1 ∶ V (G ∨K1) → V (G ∨H) such that π−1(i) = i if i ∈ V (G) and π−1(v) = u.

Suppose at some stage BE is the set of blue non-edges in G ∨ H, and BE ∩ E1

and BE ∩ E2 are the sets of blue non-edges in G ∨ K1 and H ∨ K1 respectively. Let

e = {j, k} ∈ E1. If (k ∶ i → j) happens in G ∨H, then (k ∶ π(i) → j) can be applied in

G ∨K1; if (k ∶ i → j) happens in G ∨K1, then (k ∶ π−1(i) → j) can be applied in G ∨H.

Also, if e is in some cycle C and (i→ C) happens in either G∨H or G∨K1, then by the

definition of the odd cycle rule C must totally fall in V (G). If (i → C) in G ∨H, then

(π(i) → C) in G ∨K1; if (i → C) in G ∨K1, then (π−1(i) → C) in G ∨H. Similarly, all

these correspondences work when e ∈ E2.

Therefore, we can conclude that BE is a ZFS-ZSAP in G ∨H if and only if BE ∩E1

and BE ∩E2 are ZFS-ZSAP in G ∨K1 and H ∨K1 respectively.
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Example 3.2.21. The value of ZSAP(G∨K1) and the value of ZSAP(G) can vary a lot.

For example, when G = Kn, we will show that ZSAP(Kn) = (
n
2
) and ZSAP(Kn ∨K1) =

ZSAP(K1,n) = (
n−1
2
) − 1 when n ≥ 3.

Since there are no edges in Kn, no vertices can make a force in any local game, and

odd cycle rules cannot be applied, either. This means ZSAP(Kn) = (
n
2
).

For K1,n, color some edges BE of K1,n blue so that the set of white non-edges forms

a 3-cycle with n − 3 leaves attaching to a vertex of the 3-cycle. Then BE is a ZFS-ZSAP

for K1,n, since the n − 3 leaves can turn blue by forcing triples, and then the 3-cycle can

turn blue by the odd cycle rule. Therefore, ZSAP(K1,n) ≤ (
n−1
2
) − 1.

The inequality ZSAP(K1,3) ≤ (
3−1
2
) − 1 = 0 implies ZSAP(K1,3) = 0, so we may assume

n ≥ 4. Suppose BE is a ZFS-ZSAP of K1,n with ∣BE ∣ = (
n−1
2
) − 2. Let GW be the graph

whose edges are the white non-edges. Then ∣E(GW )∣ = n + 1. Obtain a subgraph H of

GW by deleting leaves and isolated vertices repeatedly until there is no leaves or isolated

vertices left. By the choice of H, it is either ∣V (H)∣ = 0 or H has the minimum degree

at least two. Since deleting a leaf removes an edge and a vertex, ∣V (H)∣ + 1 ≤ ∣E(H)∣,

implying ∣E(H)∣ ≠ 0 and ∣V (H)∣ ≠ 0. Now H is a graph with minimum degree at least

two and ∣V (H)∣ + 1 ≤ ∣E(H)∣; therefore, H must contain a component that is not a cycle

(so in particular not an odd cycle). Let {j, k} be an edge in this component. If (k ∶ i→ j)

force {j, k} to turn blue for some i, then i must be the center vertex of K1,n. However,

in φZ(G,BE, k), vertex i has at least two white neighbors, because k has degree at least

two in H. Therefore, no edges in this component can turn blue by either a forcing triple

or an odd cycle rule, a contradiction. Hence ZSAP(K1,n) = (
n−1
2
) − 1.

Proposition 3.2.22. For any graph G, ZSAP(G ∨ K1) ≤ ZSAP(G). If G contains no

isolated vertices, then ZSAP(G ∨K1) = ZSAP(G).

Proof. Every ZFS-ZSAP for G is a ZFS-ZSAP for G ∨K1, so ZSAP(G ∨K1) ≤ ZSAP(G).

Now consider the case that G has no isolated vertices. Suppose at some stage BE is

the set of blue non-edges for bothG∨K1 andG. We claim that if a non-edge {j, k} ∈ E(G)
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turns blue in G ∨K1, then it can also turn blue in G.

Label the vertex in V (K1) as v. If (k ∶ i → j) in G ∨K1 with i ≠ v, then it is also a

forcing triple in G. Suppose (k ∶ v → j) happens in G ∨K1. Then it must be the case

when j is the only white vertex in φZ(G∨K1,BE, k), since v is a vertex that is adjacent

to every vertex and it cannot make a force unless every vertex except j is already blue.

Since j is not an isolated vertex, it has a neighbor i′ in V (G). Now (k ∶ i′ → j) can force

{j, k} to turn blue, since j is also the only white vertex in φZ(G,BE, k).

On the other hand, if (i→ C) happens in G∨K1 with i ≠ v, then it can also happen in

G. Suppose (v → C). Then every vertex in C is incident to exactly two white non-edges

by the odd cycle rule, since v is adjacent to every vertex. Label the vertices of C by {ks}ds=1

in the cycle order, with the index taken modulo d. In the local game φZ(G,BE, k2), there

are only two white vertices, namely k1 and k3. Since G has no isolated vertices, k1 has

a neighbor i′ in V (G). If i′ is not adjacent to k3, then (k2 ∶ i′ → k1) can be applied and

then the argument in Remark 3.2.10 can force all edges in E(C) to turn blue. Therefore,

we may assume i′ is adjacent to k3. By applying the same argument to k4, we know i′

is also adjacent to k5. Inductively, i′ is adjacent to all vertices in C, since C is an odd

cycle. Therefore, (i′ → C) can happen in G.

In conclusion, ZSAP(G ∨K1) = ZSAP(G).

Proposition 3.2.23. Let G be a graph. Then ZSAP(G ∨K1) = 0 if and only if one of

the following holds:

• G has no isolated vertices and ZSAP(G) = 0.

• G =K1 or G is a disjoint union of a connected graph H and an isolated vertex such

that ZSAP(H) = 0.

• G =K3.

Proof. Let v be the vertex in V (K1) ⊆ V (G ∨K1). In the case that G has no isolated

vertices, ZSAP(G ∨K1) = 0 if and only if ZSAP(G) = 0 by Proposition 3.2.22. If G = K1,
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then ZSAP(K2) = 0. If G = K3, then ZSAP(K1,3) = 0. Finally, suppose G is a disjoint

union of a connected graph H and an isolated vertex w such that ZSAP(H) = 0. Then

every forcing triple and every odd cycle rule in H can work in G ∨K1, so all non-edges

of G ∨K1 that are in the part of H can turn blue. After that, (k ∶ v → w) takes action

in G ∨K1 for every k ∈ V (H). Thus, every non-edge in G ∨K1 is blue.

For the converse statement, suppose ZSAP(G ∨K1) = 0 and no initial blue non-edge

is given for G ∨K1. Suppose G has p components with vertex sets V1, V2, . . . , Vp. Call a

non-edge with two endpoints in different components in G as a crossing non-edge. We

claim that if p ≥ 3, then no crossing non-edge can turn blue in G ∨K1 by any forcing

triples. Let {j, k} be a crossing non-edge. Without loss of generality, let k ∈ V1 and

j ∈ V2. Suppose at some stage BE is the set of blue non-edges and none of the crossing

non-edges is blue. In the local game φZ(G∨K1,BE, k), all blue vertices are contained in

V1 ∪ {v}, since all the crossing non-edges are white. If (k ∶ i → j) happens in G ∨K1, it

must be the case that i = v, since v is the only blue neighbor of j in φZ(G ∨K1,BE, k).

Pick a vertex u ∈ V3. Since both j and u are white neighbors of v in φZ(G ∨K1,BE, k),

it is impossible that (k ∶ i→ j) is a forcing triple. In conclusion, if ZSAP(G∨K1) = 0 and

G contains at least three components, then the odd cycle rule must be applied to the

crossing non-edges. Therefore, G must be K3 in this case.

If G has only one component, then G contains no isolated vertices, unless G = K1.

Otherwise assume G has an isolated vertex and has exactly two components. Then G

must be a disjoint union of a connected graph H and an isolated vertex w. Now we build

a sequence of forces for H according to the forces in G∨K1. Suppose (k ∶ i→ j) happens

in G ∨K1 with j, k ∈ V (H). If i ∈ V (H), then (k ∶ i → j) also works in H. If i ∉ V (H),

then it must be (k ∶ v → j). But v is adjacent to every vertex, so in φZ(G,BE, k) every

vertex except j must be blue. Since H is connected, there must be a vertex i′ that is

adjacent to j. Thus, (k ∶ i′ → j) can force {j, k} to turn blue.

Suppose (i → C) for some i and odd cycle C. If i ∈ V (H), then V (C) ⊂ V (H) and
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(i → C) can be applied in H. Since i cannot be w, we assume i = v. If w ∈ V (C), then

C − w forms a path and all edges on this path can turn blue in H, by the argument of

Corollary 3.2.8.

Finally, we claim that (v → C) cannot happen in G ∨K1 when V (C) ⊆ V (H). For

the purpose of obtaining a contradiction, suppose at some stage BE is the set of blue

non-edges and (v → C) happens. Let GW be the graph whose edges are the white non-

edges. Write V (C) = {ks}ds=1 in the cycle order, with the index taken modulo d. Since

C is a component in GW [NG∨K1(v)], every non-edge {ks,w} with ks ∈ V (C) is blue at

this stage. When all non-edges {ks,w} were all white, no odd cycle rule can force any

of them to turn blue, since w is incident to at least d ≥ 3 white non-edges. Without loss

of generality, assume that {k1,w} is the first non-edge to turn blue among {ks,w} with

ks ∈ V (C). Only a forcing triple can possibly force {ks,w} to turn blue, and it must be

(k1 ∶ v → w) or (w ∶ v → k1). Suppose this happened at the stage where BE0 was the set

of blue non-edges. It cannot be (k1 ∶ v → w) because v has at least three white neighbors

k2, kd, and w in φZ(G ∨K1,BE0 , k1); meanwhile, it cannot be (w ∶ v → k1), since v has

at least d ≥ 3 white neighbors in φZ(G ∨K1,BE0 ,w). This yields a contradiction.

In conclusion, every possible force in G ∨K1 corresponds to a force in H. Therefore,

if ZSAP(G ∨K1) = 0, then ZSAP(H) = 0.

3.2.2 Computational results for small graphs

Table 3.1 shows the proportions of graphs that have certain parameters equal to 0,

over all connected graphs with a fixed number of vertices. Graphs are not labeled and

isomorphic graphs are considered as the same. The computation is done by Sage and

the code can be found in [19].

In Section 3.4, we apply these results to help compute the value of ξ(G) when ∣V (G)∣ ≤

7.



55

Table 3.1 The proportion of graphs that satisfies ζ(G) = 0, over all connected graphs
on n vertices

n ZSAP = 0 Z`
SAP = 0 Z+

SAP = 0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 0.86 0.95 0.95
6 0.79 0.92 0.92
7 0.74 0.89 0.89
8 0.73 0.88 0.88
9 0.76 0.89 0.89
10 0.79 0.90 0.91

3.3 A vertex cover version of the SAP zero forcing game

As Example 3.2.21 points out, for a connected graph G on n vertices, the value of

ZSAP(G) can be much higher than n. This section considers a vertex cover version of the

SAP zero forcing game. That is, if B is a set of vertices, then consider the complementary

closure cl(B) as all those non-edges that are incident to any vertex in B. Now instead of

picking some non-edges as blue at the beginning, we pick a set of vertices B, and color

the set cl(B) blue initially.

Following this idea, a new parameter Zvc(G) is defined with 0 ≤ Zvc(G) ≤ n, and

Theorem 3.3.2 shows that M(G) −Zvc(G) ≤ ξ(G).

Definition 3.3.1. For a graph G, the parameter Zvc(G) is the minimum number of

vertices B such that by coloring cl(B) blue, every non-edge will become blue by repeated

applications of CCR-ZSAP with the restriction

• (k ∶ i→ j) cannot perform a force if i ∈ B and {i, k} ∈ E(G).

A set B ⊆ V (G) with this property is called a Zvc zero forcing set.
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Theorem 3.3.2. Let G be a graph. Then

M(G) −Zvc(G) ≤ ξ(G).

Proof. For given G and A = [ai,j] ∈ S(G), let d = Zvc(G) and m = ∣E(G)∣. Pick an order

for the set of non-edges, and let Ψ be the SAP matrix for A with respect to the given

order. Let B be a ZFS-Zvc with ∣B∣ = d. We will show that we can perturb the diagonal

entries of A corresponding to B such that the new matrix has the SAP.

Let W = E(G) − cl(B) be the initial white non-edges. Since B is a ZFS-Zvc, every

non-edge in W is forced to turn blue at some stage. Say at stage t, Wt is the set of white

non-edges that are forced to turn blue. The set Wt can be one non-edge, or the edges of

an odd cycle; thus, {Wt}
s
t=1 forms a partition of W , where s is the number of stages it

takes to make all non-edges turn blue. Define Ut as follows: If Wt is a non-edge forced

to turn blue by the forcing triple (k ∶ i→ j), then Ut = {(i, k)}; if Wt is a cycle forced by

the odd cycle rule (i→ C), then Ut = {(i, v)}v∈V (C). Let U = ⋃
s
t=1Ut.

We first show that {Ut}st=1 are mutually disjoint. Let (i, k) ∈ Ut0 at some stage t0.

Suppose (k ∶ i → j) happens at stage t0. Right before the force, there must be exactly

one white non-edge connecting k and NG(i), namely {j, k}, by CCR-Z. After the force,

all white non-edges connecting k and NG(i) turn blue. Suppose (i→ C) happens instead

for some odd cycle C. Right before the force, there are exactly two white non-edges

connecting k and NG(i), namely the two edges incident to k in C. After the force, all

such white non-edges turn blue already. Therefore, (i, k) can appear in only one stage,

and {Ut}st=1 are mutually disjoint.

Next we show that Ψ[U,W ] is nonsingular. The proof of Theorem 3.2.6 shows that

if Wt0 is given by the odd cycle rule for some step t0, then Ψ[Ut0 ,Wt0] is nonsingular

and Ψ[Ut0 ,⋃
s
t=t0+1Wt] = O. We will see that the same property is also true when Wt0 a

single non-edge. Suppose at stage t0, the set of blue non-edges is BE and (k ∶ i → j) is
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applied. Thus, Ut0 = {(i, k)} and Wt0 = {{j, k}}. By Definition 3.1.1,

Ψ[Ut0 ,Wt0] = [Ψ(i,k),{j,k}] = [ai,j] ,

which is nonsingular, since {i, j} is an edge. For any white non-edge e that is not incident

to k, Ψ(i,k),e = 0. If e = {j′, k} is a white non-edge for some j′ ≠ j, then j′ is not a neighbor

of i, for otherwise i has two white neighbors in φZ(G,BE, k); therefore, Ψ(i,k),e = ai,j′ = 0.

By column/row permutations according to {Wt}
d
t=1 and {Ut}dt=1 respectively, Ψ[U,W ]

becomes a lower triangular block matrix, with every diagonal block nonsingular. Hence

Ψ[U,W ] is nonsingular.

Now give the non-edges in cl(B) an order. Following the order, for each non-edge

{i, j} in cl(B), put either (i, j) or (j, i) into another ordered set UB. Since Ψ(i,j),{i,j} = ai,i,

the diagonal entries of Ψ[UB, cl(B)] are controlled by ai,i for some i ∈ B.

Consider the matrix

Ψ[U ∪UB,W ∪ cl(B)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ[U,W ] Ψ[U, cl(B)]

Ψ[UB,W ] Ψ[UB, cl(B)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We claim that those entry ai,i with i ∈ B only appear on the diagonal of Ψ[UB, cl(B)].

For each i ∈ B, the only possible occurrence of ai,i is in the case Ψ(i,k),{i,k} = ai,i for some

vertex k and non-edge {i, k} ∈ E(G). If i ∈ B and {i, k} ∈ E(G), then {i, k} ∈ cl(B).

Therefore, Ψ[U,W ] and Ψ[UB,W ] do not have this type of ai,i with i ∈ B involved. Now

it is enough to show (i, k) ∉ U . Recall that U = ⋃
s
t=1Ut. At stage t, if a forcing triple

is applied, then (i, k) ∉ Ut since (k ∶ i → j) is forbidden for any j by the definition; if

the odd cycle rule is applied, then (i, k) ∉ Ut since {i, k} ∈ E(G). Therefore, Ψ[U, cl(B)]

contains no such ai,i with i ∈ B, either.

Let DB be the diagonal matrix indexed by V (G) with the i, i-entry 1 if i ∈ B and 0

otherwise. Consider the matrix A + xDB. By the discussion above, the SAP matrix of
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A + xDB contains the submatrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ[U,W ] Ψ[U, cl(B)]

Ψ[UB,W ] Ψ[UB, cl(B)] + xI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since Ψ[U,W ] is nonsingular, the submatrix above is nonsingular when x is large enough.

This means, by changing d = ∣B∣ diagonal entries of A, the corresponding SAP matrix

becomes full-rank. Therefore,

M(G) −Zvc(G) ≤ null(A + xDB) ≤ ξ(G).

Remark 3.3.3. Theorem 3.3.2 actually proves that if B is a ZFS-Zvc, then every matrix

A ∈ S(G) attains the SAP by perturbing those diagonal entries corresponding to B.

In classical graph theory, a vertex cover of a graph G is a set of vertices S such that

every edge in G is incident to some vertex in S; that is, G − S contains no edges. The

vertex cover number β(G) is defined as the minimum cardinality of a vertex cover in the

graph G. Corollary 3.3.4 below shows the relation between M(G), ξ(G), and β(G).

Corollary 3.3.4. Let G be a graph. Then

M(G) − β(G) ≤ ξ(G).

Proof. Let S be a vertex cover of G. Then S is a ZFS-Zvc, since every non-edge is

blue initially. Therefore, Zvc(G) ≤ β(G) and the desired inequality comes from Theorem

3.3.2.

Example 3.3.5. Let G =K3 ∨K4. Then from the data in [9], M(G) = Z(G) = 5. Since

G is a subgraph of K3 ∨ P4, by minor monotonicity ξ(G) ≤ ξ(K3 ∨ P4) ≤ Z(K3 ∨ P4) ≤ 4.

On the other hand, by picking one of the vertex in V (K4), it forms a ZFS-Zvc, since the

initial white non-edges form a 3-cycle and the odd cycle rule applies. Thus Zvc(G) = 1

and ξ(G) ≥M(G) −Zvc(G) = 4. Therefore, ξ(G) = 4.
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Notice that G contains a K4 minor but not a K5 minor, so we can only say ξ(G) ≥

ξ(K4) = 3 by considering Kp minors.

Similarly, we can define Z`
vc(G) by changing CCR-ZSAP to CCR-Z`

SAP. Then we have

Theorem 3.3.6.

Theorem 3.3.6. Let G be a graph. Then

M+(G) −Z`
vc(G) ≤ ν(G).

Remark 3.3.7. The proof of Theorem 3.3.2 relies on the fact Ψ[U,W ] is a lower trian-

gular block matrix. This is not always true for Z+. As a vertex can force two or more

white vertices under CCR-Z+, the sets {Ut}st=1 might not be mutually disjoint and it is

possible that ∣U ∣ < ∣W ∣. Therefore, the same proof does not work for Z+.

3.4 Values of ξ(G) for small graphs

Analogous to M(G) ≤ Z(G), it is shown in [4] that ξ(G) ≤ ⌊Z⌋(G), where ⌊Z⌋(G) is

defined through a (conventional) zero forcing game with CCR-⌊Z⌋:

• CCR-Z can be used to perform a force. Or if i is blue, i has no white neighbors,

and i was not used to make a force yet, then i may pick one white vertex j and

force it to turn blue.

By using Sage and with the help of Theorem 3.2.6 and Theorem 3.3.2, we will see

that ⌊Z⌋(G) agrees with ξ(G) for graphs up to 7 vertices. This result also relies on some

other lower bounds. The Hadwiger number η(G) is defined as the largest p such that G

has a Kp minor. Since ξ(G) is minor monotone, it is known [4] that when η(G) = p

ξ(G) ≥ ξ(Kp) = p − 1 = η(G) − 1.

The T3-family is a family of six graphs [14, Fig. 2.1]. It is known [14] that a graph G

contains a minor in the T3-family if and only if ξ(G) ≥ 3.
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Lemma 3.4.1. Let G be a connected graph with at most 7 vertices. Then at least one

of the following is true:

• ZSAP(G) = 0, which implies ξ(G) =M(G).

• G is a tree, which implies ξ(G) = 2 if G is not a path, and ξ(G) = 1 otherwise.

• ⌊Z⌋(G) =M(G) −Zvc(G), which implies ξ(G) = ⌊Z⌋(G).

• ⌊Z⌋(G) = η(G) − 1, which implies ξ(G) = ⌊Z⌋(G).

• ⌊Z⌋(G) = 3 and G contains a T3-family minor, which implies ξ(G) = 3.

Proof. By running a Sage program [19], one of the five cases will happen. If ZSAP(G) = 0,

then ξ(G) = M(G) by Theorem 3.2.6. If G is a tree, then ξ(G) ≤ 2, and the equality

holds only when G is not a path [5]. Both M(G)−Zvc(G) and η(G)−1 are lower bounds

of ξ(G) by Theorem 3.3.2 and [4]. When one of the lower bounds meets with the upper

bound ⌊Z⌋(G), ξ(G) = ⌊Z⌋(G). Finally, if G has a T3-family minor, then ξ(G) ≥ 3 [14].

In this case, ξ(G) = 3 when ⌊Z⌋(G) = 3.

While ξ(T ) ≤ 2 for all tree T , the value of ⌊Z⌋(T ) can be more than two. Example

A.11. of [4] gives a tree T with ⌊Z⌋(T ) = 3; the graph T is shown in Figure 3.3. However,

ξ(G) = ⌊Z⌋(G) is still true when G is a tree and ∣V (G)∣ ≤ 7.

Figure 3.3 An example of tree T with ⌊Z⌋(T ) = 3
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Lemma 3.4.2. Let G be a tree with at most 7 vertices. Then ξ(G) = ⌊Z⌋(G).

Proof. When G is a tree, it is known [5] that ξ(G) = 2 when G is not a path, and ξ(G) = 1

if G is a path. When G is a path, then ξ(G) = 1 = ⌊Z⌋(G). Assume G is not a path. It

is enough to show ⌊Z⌋(G) ≤ 2. In this case, G must have a vertex v of degree at least 3.

Call this type of vertex a high-degree vertex. If G has only one high degree vertex, then

⌊Z⌋(G) ≤ 2 since any two leaves form a ZFS-⌊Z⌋. Since ∣V (G)∣ ≤ 7, there are at most two

high-degree vertices. Pick two leaves such that the unique path between them contains

only one high-degree vertex, then these two leaves form a ZFS-⌊Z⌋.

Theorem 3.4.3. Let G be a graph with at most 7 vertices. Then ξ(G) = ⌊Z⌋(G).

Proof. Let G be a graph with at most 7 vertices. Then M(G) = Z(G) [9]. If ZSAP(G) = 0,

then ξ(G) = M(G) = Z(G). Since ξ(G) ≤ ⌊Z⌋(G) ≤ Z(G), ξ(G) = ⌊Z⌋(G). If G is a

tree, then ξ(G) = ⌊Z⌋(G) by Lemma 3.4.2. Then by Lemma 3.4.1, ξ(G) = ⌊Z⌋(G) for all

connected graph G up to 7 vertices. It is known that ξ(G1∪̇G2) = max{ξ(G1), ξ(G2)} [5]

and ⌊Z⌋(G1∪̇G2) = max{⌊Z⌋(G1), ⌊Z⌋(G2)} [4], so ξ(G) = ⌊Z⌋(G) for any graph up to 7

vertices.

Figure 3.4 A graph G on 8 vertices with ξ(G) = 2 but ⌊Z⌋(G) = 3

Example 3.4.4. LetG be the graph shown in Figure 3.4. It is known [17] thatM(G) = 2.

Since G is not a disjoint union of paths, ξ(G) = 2. Also, it can be computed that

Z(G) = ⌊Z⌋(G) = 3.
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CHAPTER 4. CONCLUSION

Zero forcing appears in many aspects of the minimum rank problem; even though

the associated color-change rule varies in different cases, the core idea is the same—to

control the nullity of a linear system.

In Chapter 2, the fact that M(C0
2k+1) = 0 for loopless odd cycles C0

2k+1 was used

to introduce the odd cycle zero forcing number Zoc(G) for loop graphs G. This new

zero forcing number inserted a new parameter between the maximum nullity and the

conventional zero forcing number; that is, M(G) ≤ Zoc(G) ≤ Z(G).

While Zoc(G) and Ẑoc(G) provide upper bounds for the maximum nullity, there are

many open questions regarding the lower bounds of the maximum nullity. The graph

complement conjecture mentioned in Section 2.5 says

M(G) +M(G) ≥ n − 2

for all simple graphs on n vertices and is still open. On the other hand, Davila and

Kenter [5] conjectured that

(g − 3)(δ − 2) + δ ≤ Z(G)

for all simple graph G with girth g ≥ 3 and minimum degree δ ≥ 2. Here the girth is the

length of the shortest cycle on G; when G is a forest, the girth is set to be ∞, but the

assumption δ ≥ 2 prevents the graph from being a forest. In 2016, Davila, Kalinowski,

and Stephen [4] posted a proof of the conjecture. One may ask the same question for

the maximum nullity; is it true that

(g − 3)(δ − 2) + δ ≤M(G)?
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In the case of g = 3 or δ = 2, this is known as the delta conjecture [2, 10], on which Hall

provided a promising approach [7].

In Chapter 3, the primary focus was on the SAP. We defined the SAP matrix Ψ for a

symmetric matrix A and observed that A has the SAP if and only if Ψ is full-rank. As a

result, zero forcing was applied on the zero-nonzero pattern of Ψ to guarantee the SAP.

Because the columns of the SAP matrix Ψ are indexed by the non-edges, the SAP zero

forcing process is coloring the non-edges. With the help of ZSAP(G) and other theorems,

the values of ξ(G) for small graphs were found.

The zero forcing technique can be applied to all linear systems to control their nul-

lities. There are some matrix properties similar to the SAP. A symmetric matrix A is

said to have the Strong Spectral Property (SSP) if X = O is the only real symmetric

matrix that satisfies A○X = I ○X = AX −XA = O; a symmetric matrix A is said to have

the Strong Multiplicity Property (SMP) if X = O is the only real symmetric matrix that

satisfies A ○X = I ○X = AX −XA = O and tr(AiX) = 0 for i = 0,1, . . . , n − 1. The SMP

and the SSP have many applications on the inverse eigenvalue problem of a graph [1].

One may apply similar techniques to those in Chapter 3 to design new parameters such

that their vanishments guarantee the SSP or the SMP.

There are still many open questions regarding the minimum rank problem and the

inverse eigenvalue problem of a graph. Zero forcing appears as an effective tool for these

problems for small graphs or structured graphs, although for large random graphs the

gap between the zero forcing number and the maximum nullity is inevitable [8,9]. There

should be more applications of zero forcing to be found.
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