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Abstract

There are profound relations between the zero forcing number and the

minimum rank of a graph. We study the relation of both parameters with

a third one, the algebraic co-rank; that is defined as the largest i such that

the i-th critical ideal is trivial. This gives a new perspective for bounding

and computing these three graph parameters.
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1 Introduction

Throughout the paper, we focus on simple graphs, except for Remark 2 and
Theorem 21, which are results for digraphs. Given a graph G and a set of inde-
terminates XG = {xu : u ∈ V (G)}, the generalized Laplacian matrix L(G,XG)
of G is the matrix whose uv-entry is given by

L(G,XG)uv =

{

xu if u = v,

−muv otherwise,

where muv is the number of the edges between vertices u and v. Moreover,
if R[XG] is the polynomial ring over a commutative ring R with unity in the
variables XG, then the critical ideals of G are the determinantal ideals given by

Ii(G,XG) = 〈minorsi(L(G,XG))〉 ⊆ R[XG] for all 1 ≤ i ≤ n,

where n is the number of vertices of G and minorsi(L(G,XG)) is the set of the
determinants of the i× i submatrices of L(G,XG).
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An ideal is said to be trivial if it is equal to 〈1〉 (= R[X ]). The algebraic
co-rank γR(G) of G is the maximum integer i for which Ii(G,XG) is trivial.
For simplicity, in the following, γ(G) denote γR(G), where R is the field of real
numbers. Note that In(G,XG) = 〈detL(G,XG)〉 is always non-trivial, and if
dG denote the degree vector, then In(G, dG) = 〈0〉.

Originally, critical ideals were defined as a generalization of the critical group,
a.k.a. sandpile group, see [2, 3, 11]. In [1, 19] can be found an account of the
main results on sandpile group. However, it is also a generalization of several
other algebraic objects like Smith group or characteristic polynomials of the
adjacency and Laplacian matrices, see [4, Section 4] and [11, Section 3.3]. Here,
we explore the relations with the zero forcing number and the minimum rank.
For this, we recall these well-known concepts.

The zero forcing game is a color-change game where vertices can be blue or
white. At the beginning, the player can pick a set of vertices B and color them
blue while others remain white. The goal is to color all vertices blue through
repeated applications of the color change rule: If x is a blue vertex and y is the
only white neighbor of x, then y turns blue, denoted as x → y. An initial set of
blue vertices B is called a zero forcing set if starting with B one can make all
vertices blue. The zero forcing number Z(G) is the minimum cardinality of a
zero forcing set. The chronological list of a zero forcing game records the forces
xi → yi in the order of performance.

For a graph G on n vertices, the family SR(G) collects all n× n symmetric
matrices with entries in the ring R, whose i, j-entry (i 6= j) is nonzero whenever
i is adjacent to j and zero otherwise. Note that the diagonal entries can be any
element in the ring R. The minimum rank mrR(G) of G is the smallest possible
rank among matrices in SR(G). Here we follow [9, Definition 1] and define the
rank of a matrix over a commutative ring with unity as the largest k such that
there is a nonzero k × k minor that is not a zero divisor. In the case of R = Z,
the rank over Z is the same as the rank over R. For simplicity, sometimes we
will denote mr(G) = mrR(G) and S(G) = SR(G).

The paper is organized as follows. Let mz(G) = |V (G)| −Z(G). It is known
[5, 16] that mz(G) ≤ mrF (G) for every graph G and any field F , where G can
be a simple graph or a digraph. In Section 2, we extend this relation by proving
that mz(G) ≤ γR(G). In general, the algebraic co-rank and the minimum rank
are not comparable. However, in Section 3, we explore the relation between the
minimum rank and the algebraic co-rank under several rings. As byproduct of
the Weak Nullstellensatz, we conclude that when R is an algebraically closed
field, mrR(G) ≤ γR(G). We also conjecture that mrR(G) ≤ γR(G). It is also
known that mz(T ) = mr(T ) for any tree T . In Section 4, we complement this
equation by proving that, for trees, mz(T ) and mr(T ) are also equal to γ(G);
similar equalities are provided for several families of graphs. Finally, in Section 5
we discuss the property that the algebraic co-rank, minimum rank and mz are
monotone on induced subgraphs, and extend some classifications.

2



2 Zero forcing number and algebraic co-rank

In [5] it was proved that mz(G) is bounded from above by mrF (G) for every
graph G and any field F . We extend this result by proving that mz(G) is also
bounded by the algebraic co-rank.

Theorem 1. For every graph G, mz(G) ≤ γR(G) for any commutative ring R
with unity.

Proof. Suppose |V (G)| = n and mz(G) = k. Let B be a zero forcing set of G
of cardinality n − k. Let (ai → bi)

k
i=1 be a chronological list. Set α = {ai}ki=1

and β = {bi}ki=1. Let L(G,XG) be the generalized Laplacian matrix of G. Let
A be the submatrix of L(G,XG) induced on rows α and columns β. Obtain A′

from A such that the order of rows corresponds with a1, . . . , ak and the order of
columns corresponds with b1, . . . , bk. At step t when at → bt is about to happen,
vertices a1, . . . , at are blue and vertices bt, . . . , bk are white. Then, at is adjacent
with bt and is not adjacent with any of vertices bt+2, . . . , bk. Therefore, A

′ is a
lower triangular matrix with −1 on all diagonal entries. Therefore, A is an k×k

submatrix of L(G,XG) with det(A) = ±1. Consequently, mz(G) ≤ γR(G).

Remark 2. The zero forcing number Z(D) and the minimum rank mr(D) of
a simple digraph D (which means no loops are allowed) are defined in [16] and
showed to have |V (G)| − Z(G) ≤ mr(D) for all digraph D. On the other hand,
the critical ideals and the algebraic co-rank γR(D) of a digraph are defined in
[11]. Theorem 1 can be extended for digraphs. That is,

mz(D) = |V (D)| − Z(D) ≤ γR(D)

for any commutative ring R with unity.

1

2

3

4

5

Figure 1: A graph with its zero forcing set

Example 3. Let G be the graph shown in Figure 1, the vertices marked as blue
form a zero forcing set, and

4 → 1, 5 → 2, 2 → 3
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form a chronological list. We have

L(G,XG) =













x1 −1 −1 −1 0
−1 x2 −1 0 −1
−1 −1 x3 0 0
−1 0 0 x4 0
0 −1 0 0 x5













.

If we write down the submatrix of L(G,XG) in the order of rows (4, 5, 2) and
columns (1, 2, 3), then we get

A′ =





−1 0 0
0 −1 0
−1 x2 −1



 ,

which is a lower triangular matrix with −1 on each diagonal entries. Therefore,
I1(G,XG) = I2(G,XG) = I3(G,XG) = 〈1〉 and γR(G) ≥ 3 = mz(G).

The main idea behind proof of Theorem 1 is to associate each zero forcing
set of cardinality k with a k × k submatrix of the generalized Laplacian matrix
with determinant ±1. As pointed out in Example 5.6 of [2], there are graphs
with algebraic co-rank k having no k-minor equal to ±1. Therefore, there are
graph in which mz(G) < γR(G).

3 Minimum rank and algebraic co-rank

Let I ⊆ R[X ] be an ideal in R[X ]. The variety of I is defined as

VR(I) = {a ∈ Rn : f(a) = 0 for all f ∈ I} .

That is, VR(I) is the set of common roots between polynomials in I. It is known
[10, Proposition 4] that if f1, . . . , fs and g1, . . . , gt are two different bases of the
same ideal I, then VR(f1, . . . , fs) = VR(g1, . . . , gt) = VR(I). Also, if I is trivial,
then VR(I) = ∅. In terms of the critical ideals, if Ik(G,XG) ⊆ R[XG] is trivial,
then, for all a ∈ Rn, there are k-minors of L(G, a) which are different of 0, and
rank(L(G, a)) ≥ k. However, γR(G) = k does not imply that mrR(G) ≥ k, since
matrices in SR(G) do not necessarily have only 0 and −1 on the off-diagonal
entries. One property of the critical ideals [11, Proposition 3.3] is that

〈1〉 ⊇ I1(G,XG) ⊇ · · · ⊇ In(G,XG) ⊇ 〈0〉.

Thus

∅ = VR(〈1〉) ⊆ VR(I1(G,XG)) ⊆ · · · ⊆ VR(In(G,XG)) ⊆ VR(〈0〉) = Rn.

If VR(Ik(G,XG)) 6= ∅ for some k, then there exists a ∈ R such that, for all
t ≥ k, It(G, a) = 〈0〉; that is, all t-minors of L(G, a) are equal to 0. Therefore,
mrR(G) ≤ k − 1.
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Lemma 4. If VR (Ir+1(G,XG)) 6= ∅, then mrR(G) ≤ r. In particular, if
r = γR(G) and VR (Ir+1(G,XG)) 6= ∅, then mrR(G) ≤ γR(G).

Example 5. Figure 2 shows the graph 3K2, which has γZ
(

3K2

)

= 2 and

γR
(

3K2

)

= 3. The Gröbner bases of its first non-trivial critical ideals in these
rings are:

I3
(

3K2, X3K2

)

= 〈x0, x1, x2, x3, x4, x5, 2〉 ⊆ Z
[

X
3K2

]

I4
(

3K2, X3K2

)

= 〈x0x1, x0x2, x0x3 + 2x0 + 2x3, x0x4, x0x5, x1x2,

x1x3, x1x4, x1x5 + 2x1 + 2x5, x2x3, x2x4 + 2x2 + 2x4,

x2x5, x3x4, x3x5, x4x5〉 ⊆ R
[

X
3K2

]

For this graph, we have that VZ

(

I3
(

3K2, X3K2

))

is empty, that is, there is no

a ∈ Z
6 such that I3

(

3K2, a
)

= 〈0〉. On the other hand, I4
(

3K2,0
)

= 〈0〉 ⊆

R
[

X
3K2

]

. Meanwhile, Z
(

3K2

)

= 4, so mrR
(

3K2

)

= mz
(

3K2

)

= 2.

0

1 2

3

45

















x0 −1 −1 0 −1 −1
−1 x1 −1 −1 0 −1
−1 −1 x2 −1 −1 0
0 −1 −1 x3 −1 −1
−1 0 −1 −1 x4 −1
−1 −1 0 −1 −1 x5

















Figure 2: The graph 3K2 and its generalized Laplacian matrix

In the case of algebraically closed fields, that is, fields where every non-
constant polynomial in R[X ] has a root in R, minimum rank can be bounded
from above by the algebraic co-rank. This is a consequence of the following
outstanding result.

Lemma 6. [10, The Weak Nullstellensatz] Let R be an algebraically closed field
and let I ⊆ R[X ] be an ideal satisfying V (I) = ∅. Then I is trivial.

In general, the same result for any arbitrary ring is not always true. For
instance, consider the ideal I3

(

3K2, X3K2

)

⊆ Z
[

X
3K2

]

in Example 5. In this

case, VZ

(

I3
(

3K2, X3K2

))

is empty and I3
(

3K2, X3K2

)

is non-trivial. However,

VR(I4
(

3K2, X3K2

)

) is not empty, in fact, mrR(3K2) ≤ γR(3K2).
Let r = γR(G). If R is an algebraically closed field, then by the weak

nullstellensatz, V (Ir+1(G,XG)) is not empty. And by Lemma 4, next result
follows.

Theorem 7. Let R be an algebraically closed field. Then mrR(G) ≤ γR(G) for
every graph G.
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The minimum rank problem have many variants, one is that the diagonal
entries might have some restrictions. For example, a variant of the mrC considers
only Hermitian matrices, so all the diagonal entries must be real. However, if
no restrictions exists on the diagonal entries, then Theorem 7 implies mrC(G) ≤
γC(G). In general, it is not clear the relation between γR(G) and mrR(G) for
any arbitrary ringR and graph G. ForR = R, we have the following conjecture.

Conjecture 8. For any graph G, mrR(G) ≤ γR(G).

It is known [14] that mr(G) = mz(G) for graphs with at most 7 vertices. By
Theorem 1, we know that Conjecture 8 is true up to 7 vertices. In fact, for graphs
on at most 6 vertices, it is an equality except for 21 graphs, see Appendix. For
the case of integers, we do not have, in general, mrZ(G) ≤ γZ(G). For instance,
consider complete tripartite graphs Km,n,o, it is known [2, Theorem 4.2] that
γZ(Km,n,o) ≤ 2. On the other hand, in [6, Theorem 4.4], it was proved that
when m,n, o ≥ 3, 3 = mrR(Km,n,o) ≤ mrZ(Km,n,o).

01

2

3

4

5

0

1

2

3

45

0

1

2

3 5

4

(a) GA (b) GB (c) GC

Figure 3: The only three graphs with at most 6 vertices for which there exists
no a ∈ Z

n such that the first non-trivial critical ideal vanishes at a

A natural approach to Conjecture 8 is to use Lemma 4. We have verified
by Sage [20] that for any graph with at most 6 vertices, there exists an a ∈
{−2,−1, 0, 1, 2}n such that the first non-trivial critical ideal over R vanishes at
a, except for only 3 graphs; see Figure 3. For these 3 graphs (GA, GB and GC)
there is an a ∈ R

6 such that the first non-trivial ideal vanishes at a. This can
be done by looking at the Gröbner bases of their first non-trivial critical ideals.
We may compute γR(GA) = γR(GB) = γR(GC) = 3, and the Gröbner bases of
their first non-trivial critical ideals are as follows:

I4(GA, XGA
) = 〈x0x1 − x1 − 2, x0x3 + 2x0 + x3, x0x5 + 1,

x1x3 + x1 + x3 + 2, x1x5 + x1 + 2x5, x2,

x3x5 − x3 − 2, x4〉,

I4(GB , XGB
) = 〈x0+x5−1, x1+x5−1, x2−x5, x3−x5, x4+x5−1, x2

5−x5−1〉,

and

I4(GC , XGC
) = 〈x0 + x5 + 3, x1 − x5, x2 − x5, x3 − x5, x4 − x5, x

2
5 + x5 − 1〉.

Theorem 9. For every graph G with at most 6 vertices and r = γR(G), there
exists an a ∈ R

n such that 〈0〉 = Ir+1(G, a) ⊆ R[XG].

6



A new variant of the minimum rank problem is to restrict the matrices to
the evaluations of the generalized Laplacian matrix. In the following we will
give few examples to this problem.

Definition 10. Let G be a graph. The critical minimum rank mrcr
R
(G) is

defined as the minimum rank over L(G,d) for all d ∈ Rn. In the case of
R = R, we simply write mrcr(G) for mrcr

R
(G).

By definition, the critical minimum rank is a restricted version of the mini-
mum rank, so mrR(G) ≤ mrcr

R
(G). It is also true that γR(G) ≤ mrcr

R
(G) for and

any graph G. Figure 4 helps us visualize the relations between mz(G), mrR(G),
γR(G), and mrcr

R
(G).

mz(G)

mrR(G) γR(G)

mrcr
R
(G)

Figure 4: The relations between mz(G), mrR(G), γR(G), and mrcr
R
(G), where

each line means the upper parameter is an upper bound for the lower parameter

The inequality mr(G) ≤ mrcr(G) can be strict. For example, we know
mr(3K2) = 2 and mrcr(3K2) ≥ γ(3K2) = 3 by Example 5.

Proposition 11. Let G be a graph. If there is a vector d ∈ Rn such that
rank(L(G,d)) = mrR(G), then mrR(G) = mrcr

R
(G). Specifically, if there is a

vector d ∈ Z
n such that rank(L(G,d)) = mz(G), then mz(G) = mrcr

Z
(G) and

mz(G) = mr(G) = mrZ(G) = γ(G) = γZ(G) = mrcrZ (G).

Proof. If there is a vector d ∈ Rn such that rank(L(G,d)) = mrR(G), then

mrcrR(G) ≤ rank(L(G,d)) = mrR(G).

Through the diagram in Figure 4, we know mrR(G) = mrcr
R
(G).

Similarly, if there is a vector d ∈ Z
n such that rank(L(G,d)) = mz(G), then

mrcrZ (G) ≤ rank(L(G,d)) = mz(G).

Through the diagram in Figure 4, we know mrZ(G) = mz(G). Since

mz(G) ≤ mrR(G) ≤ mrZ(G) ≤ mrcrZ (G)

and
mz(G) ≤ γZ(G) ≤ γR(G) ≤ mrcrR (G) ≤ mrcrZ (G),

we know all the mentioned quantities are the same.

The next section we will use Proposition 11 to show that mz(G) = γ(G) =
mr(G) for many graphs.

7



4 Graphs with mz(G) = γ(G) = mr(G)

We begin by showing mz(G) = γ(G) = mr(G) when G is a tree and combining
results in the literature.

The minimum rank of a tree has been well-studied. In [18], it was shown
that M(T ) = P (T ) = ∆(T ) for any tree T . Here M(T ) is the maximum nullity
of T over R, which is equal to |V (T )|−mr(T ); the path cover number P (T ) is the
minimum number of disjoint induced paths on T that can cover the vertices of
T ; the parameter ∆(T ) is defined as the maximum of p−q such that by deleting
q vertices from T the remaining graph becomes p paths. In [5] it was proved
that mr(T ) = mz(T ) for any tree T . It is also known [8] that the minimum
rank of a tree is field independent; that is, mr(T ) = mrF (T ) for any field F . In
summary, for any tree T on n vertices, it is known that

mr(T ) = mz(T ) = n− P (T ) = n−∆(T ) = mrF (T )

for any field F .
Next, we will show that mz(T ) = mrcr

Z
(T ) for any tree T .

Theorem 12. For any tree T , mz(T ) = mrcr
Z
(T ), which is the same as mr(T ),

mrZ(T ), γ(T ), γZ(T ), n− P (T ), and n−∆(T ).

Proof. It is known [5] that mr(T ) = mz(T ). Let A be a matrix in S(T ) such
that rank(A) = mr(T ) = mz(T ). By [15, Theorem 4.2], A can be chosen as a
0, 1-matrix. Let dA be the vector that records the diagonal of A. Then −A =
L(T,−dA). By Proposition 11, mz(T ) = mrcr

Z
(T ), so the related quantities are

the same.

For a graph G, a 2-matching is a set edges M ⊆ E(G) such that every vertex
of G is incident to at most two edges in M. One may think of M as the edges
of a disjoint union of (not necessarily induced) paths as a subgraph of G. The
2-matching number ν2(G) is the maximum cardinality (number of edges) of a
2-matching of G. In [12] it was proved that γZ(T ) = ν2(T ) for any tree T . By
Theorem 12, we know ν2(T ) = γZ(T ) = n− P (T ) for any tree T on n vertices.
Below we give a direct proof of this result.

Proposition 13. For any tree T on n vertices, ν2(T ) = n− P (T ).

Proof. Let M be a maximum 2-matching of T . Let X be the set of vertices that
are incident to at least one edge in M. Since M is maximum, G −X should
be some isolated vertices. Consider P as a collection of path that includes the
paths in M and the isolated vertices (each as a path on one vertex) in G−X .
Since T is a tree, every path in P is an induced path. The paths in P covers
all vertices of T and has |M| edges. Thus, there are n − |M| paths in P and
P (T ) ≤ n− |M| = n− ν2(T ).

Conversely, each path cover of T with P (T ) paths has n− P (T ) edges, and
these edges form a 2-matching of T , so ν2(T ) ≥ n− P (T ).

8



Corollary 14. There is a linear-time algorithm for finding γZ(T ), which is the
same as ν2(T ), mz(T ), mr(T ), mrZ(T ), γ(T ), n− P (T ), and n−∆(T ).

Proof. In [17], there is a linear-time algorithm for finding ∆(T ). By Theorem 12,
all the mentioned quantities can be found in linear-time.

Proposition 15. For any cycle Cn with n ≥ 3, mz(Cn) = mrcr
Z
(Cn) = n − 2,

which is the same as mr(Cn), mrZ(Cn), γ(Cn), and γZ(Cn).

Proof. By [15, Theorem 4.5], for each n 6= 5, there is a 0, 1-matrix A such
that rank(A) = mz(Cn) = n − 2. Let dA be the vector recording the diagonal
entries of A, then rank(L(Cn,−dA)) = n − 2. For n = 5, we may pick d =
(0,−1, 1, 1, 2), where the vertices are labeled with respect to the cycle order.
Thus, rank(L(C5,d)) = 3 = n− 2. Consequently, we may apply Proposition 11
to get the desired results.

Proposition 16. The Petersen graph G has mz(G) = mrcr
Z
(G) = 5, which is

the same as mr(G), mrZ(G), γ(G), and γZ(G).

Proof. By [13, Proposition 2.8], the adjacency matrix A of the Petersen graph
has rank(A − I) = 5 = mr(G) = mz(G). Therefore, the desired results follow
from Proposition 11.

Proposition 17. Let G be the line graph of a tree. Then mz(G) = mrcr
Z
(G),

which is the same as mr(G), mrZ(G), γ(G), and γZ(G).

Proof. By [13, Corollary 2.10 and Corollary 2.11], there is a vector d such that
rank(A+diag(d)) = mr(G) = mz(G). By applying Proposition 11 to L(G,−d),
we get the desired results.

5 Graph classes for bounded mz, mr and γ

It is known that algebraic co-rank, minimum rank and mz are monotone on
induced subgraphs. Then, it is natural to ask for classifications of graphs where
these parameters are bounded from above. In this section we explore some
relations between previous characterization, and extend one for directed graphs.
First, we recall the following result.

Lemma 18. [5, 11] Let H be an induced subgraph of G. Then,

(1) γR(H) ≤ γR(G),

(2) mrR(H) ≤ mrR(G),

(3) mz(H) ≤ mz(G).

Given a family of graphs F, a graph G is called F-free if no induced sub-
graph of G is isomorphic to a member of F. Since mz(G) ≤ γR(G) and
mz(G) ≤ mrR(G), then the family of graphs with γR(G) ≤ k or mrR(G) ≤ k

9



are contained in the family of graphs with mz(G) ≤ k. In previous works, it was
noticed that among connected graphs Kn is the unique graph with minimum
rank, algebraic co-rank and mz equal to 1.

Theorem 19. [2, 7] Let G be a connected graph and R a commutative ring with
unity. Then, the following are equivalent:

(1) G is the complete graph,

(2) G is P3-free,

(3) mrR(G) ≤ 1,

(4) γR(G) ≤ 1,

(5) mz(G) ≤ 1.

⋉ dart K5 \ P3

Figure 5: The graphs ⋉, dart and K5 \ P3

This confirms Conjecture 8 for graphs with mrR(G) ≤ 2.

Theorem 20. If G is a connected graph such that mrR(G) ≤ 2, then mrR(G) ≤
γR(G).

Proof. Let G be a connected graph with mrR(G) ≤ 2. If G has γR(G) ≤ 1, then
G is a complete graph. Then, by Theorem 19, mrR(G) = γR(G) = 1. On the
other hand, if G has mrR(G) = 2, then γR(G) ≥ 2.

Finally, we turn our attention to simple digraphs, where loops and multiedges
are not allowed. The concept of the algebraic co-rank , the minimum rank,
and the zero forcing number extend to digraphs naturally [11, 16] with slightly
modifications. Let D be a digraph on n vertices. The generalized Laplacian
matrix L(D,XD) is defined in the same way as that of a simple graph, except
that muv is the number of arcs going from u to v. For the minimum rank
of a digraph, the family SR(G) consists of all n × n matrices with entries in
the ring R whose i, j-entry (i 6= j) is nonzero whenever (i, j) is an arc and
zero otherwise. For zero forcing number of a digraph, the color change rule is
applied in y when y is the only out-neighbor of the blue vertex x. By defining
these concepts, Lemma 18 can be extended to digraphs. That is, if D1 is an
induced subdigraph of D2, then γR(D1) ≤ γR(D2), mrR(D1) ≤ mrR(D2), and
mz(D1) ≤ mz(D2).
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Kn2
Tn1

T ′
n3

Figure 6: The digraph Λn1,n2,n3

In the rest of this section, we contribute by extending a classification of
digraphs with at most 1 trivial critical ideal, obtained in [4], by including the
minimum rank and the parameter mz(D).

Let Λn1,n2,n3
be the digraph defined in the following way: The vertex set

V (Λn1,n2,n3
) is partitioned in three sets T , T ′ and K with n1, n3 and n2 ver-

tices, respectively, such that T and T ′ are two trivial digraphs (which have
no arcs), and K is a complete digraph (which has double arcs between each
pair of vertices). Additionally, the arc sets (T,K)Λn1,n2,n3

, (T, T ′)Λn1,n2,n3
and

(K,T ′)Λn1,n2,n3
are complete. See Figure 6 for a graphical representation of

Λn1,n2,n3
.

Let F be the family of the seventeen digraphs.

F3,1 F3,2 F3,3 F3,4 F3,5 F3,6

F3,6 F4,1 F4,2 F4,3 F4,4 F4,5

F4,6 F4,7 F4,8 F4,9
F4,10

Figure 7: Seventeen digraphs with algebraic co-rank equal to 2, where the filled
vertices mark a zero forcing set for each graph

Theorem 21. Let R be a commutative ring with unity. The following are
equivalent:
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(1) D is F-free,

(2) D is isomorphic to Λn1,n2,n3
,

(3) mrR(D) ≤ 1,

(4) mz(D) ≤ 1,

(5) γR(D) ≤ 1.

Proof. In [4], it was proven that (1), (2), and γZ(D) ≤ 1 are equivalent.
Next we will show that (2) implies (3) and (5). Suppose D is a digraph

isomorphic to Λn1,n2,n3
. Then





O J J

O J J

O O O





is a matrix in SR(D), with the partition V (D) = V (Tn1
)∪̇V (Kn2

)∪̇V (T ′
n3
).

Since this matrix has rank 1, then mrR(D) ≤ 1. And by Proposition 11 γR(D) ≤
1.

Since mz(D) ≤ mrR(D) and mz(D) ≤ γR(D) for all digraphs, either of (3)
or (5) implies (4).

Finally, Figure 7 shows a zero forcing set for each of the seventeen digraphs
in F, so mz(D) = 2 for all D ∈ F. Therefore, (4) implies (1).
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Appendix: Graphs with at most 6 vertices and

mz(G) 6= γR(G)

From the 143 connected graphs with at most 6 vertices, only 21 graphs have
mz(G) < γR(G). For the other graphs, mz(G) = γZ(G) = γR(G).

mz 2 3 3 3 3 3

γZ 3 4 4 4 4 4

γR 3 4 4 4 4 4

12



mz 2 3 3 2 3 3

γZ 3 4 4 3 4 4

γR 3 4 4 3 4 4

mz 3 3 3 2 2 2

γZ 4 4 4 3 3 3

γR 4 4 4 3 3 3

mz 2 2 2

γZ 3 2 2

γR 3 3 3
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