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Abstract

Given a graph G, one may ask: “What sets of eigenvalues are possible over
all weighted adjacency matrices of G?” (The weight of an edge is positive or
negative, while the diagonal entries can be any real numbers.) This is known
as the Inverse Eigenvalue Problem for graphs (IEP-G). A mild relaxation of
this question considers the multiplicity list instead of the exact eigenvalues
themselves. That is, given a graph G on n vertices and an ordered partition
m “ pm1, . . . ,m`q of n, is there a weighted adjacency matrix where the i-
th distinct eigenvalue has multiplicity mi? This is known as the ordered
multiplicity IEP-G. Recent work solved the ordered multiplicity IEP-G for
all graphs on 6 vertices.

In this work, we develop zero forcing methods for the ordered multiplicity
IEP-G in a multitude of different contexts. Namely, we utilize zero forcing
parameters on powers of graphs to achieve bounds on consecutive multiplic-
ities. We are able to provide general bounds on sums of multiplicities of
eigenvalues for graphs. This includes new bounds on the the sums of multi-
plicities of consecutive eigenvalues as well as more specific bounds for trees.
Using these results, we verify the previous results above regarding the IEP-
G on six vertices. In addition, applying our techniques to skew-symmetric
matrices, we are able to determine all possible ordered multiplicity lists for
skew-symmetric matrices for connected graphs on five vertices.
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1. Introduction1

Given a graphG, the inverse eigenvalue problem asks the question: “What2

(multi-)sets of eigenvalues are possible over all weighted adjacency matrices3

of G?” Here, an edge weight is a nonzero value (positive or negative) and4

the diagonal entries can be any real number.5

Zero forcing is a one-player game played on a graph whereby the player6

colors an initial set of vertices, then applies a propagation process during7

which colored vertices may force uncolored vertices. The goal is to find8

minimum set of vertices such that eventually all of the vertices become col-9

ored. Many variations of zero forcing are used to bound the maximum nullity10

over certain classes of matrices associated with G. For instance, the original11

variation of the game was introduced as the result of an AIM workshop [4]12

and helped determine the maximum nullity for symmetric graphs (allowing13

weighted diagonals) for all graphs of up to 7 vertices [16]. Since then, a14

multitude of variations of zero forcing have been developed for other classes15

of graphs including but certainly not limited to skew-symmetric matrices [5],16

sign patterns [21], hypermatrices [25], positive semidefinite matrices [8], ma-17

trices with limited negative eigenvalues [15], multigraphs [24], looped graphs18

[7, 9], and of course, combinations of these cases [17]. Additionally, in some19

cases, refinements of these methods have been made by introducing additional20

rules such as odd-cycle conditions [29]. Indeed, zero forcing has proven such21

a popular topic in its own right that it has spawned variations that remove22

the linear-algebraic context altogether such as k-forcing [6]. Specific applica-23

tions such as power domination [23] have spawned their own lines of research24

as well. Table 1 summarizes a few variations of zero forcing.25

Many of these variations live in isolation and only apply when the corre-26

sponding class of matrices arises or within a specific application. In this ar-27

ticle, we demonstrate that many of these variations, when considered jointly,28

can help paint a much clearer, if not definitive picture, as to what eigenvalues29

are possible under a variety of different constraints.30

The original motivation of this study was to study ordered eigenvalue31

multiplicity lists. An ordered eigenvalue multiplicity list for a matrix is a list32
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pm1, . . . ,m`q such that the i-th distinct eigenvalue has precisely multiplicity33

mi. In [2], the authors tirelessly classify all allowable ordered eigenvalues34

multiplicity lists over all weighted adjacency matrices (with arbitrary diag-35

onal) for all graphs up to 6 vertices. (The cases for graphs up to 5 vertices36

were done in [12], while cases for graphs up to 4 vertices were done in [13].)37

Most of the cases therein are covered using a variety of parameters, includ-38

ing the zero forcing number, or specialized results. However, six exceptional39

graphs required significant additional analysis. In contrast, we develop a ro-40

bust computational approach, using just the zero forcing numbers to validate41

the results in [2]. Our results arrive at similar, but fewer, exceptional cases.42

Our main approach is to apply a myriad of different, straight-forward,43

zero forcing parameters in order to exclude the possibility of certain multi-44

plicity lists. In addition to using previously developed zero forcing parameters45

we will repeatedly make use of combinations of zero forcing techniques not46

widely used before with a focus on powers of graphs. These parameters will47

provide an upper bound for sums of various elements in the multiplicity list.48

With these bounds, we construct a system of linear constraints in order to49

determine the region of feasibility which provides candidates for allowable50

ordered eigenvalues multiplicity lists.51

A zero forcing parameter, rigid linkage forcing, was recently introduced52

in [20] to bound the total multiplicity of multiple eigenvalues. While our53

approach has the same goal of studying multiplicities of eigenvalues through54

zero forcing, they do not appear comparable or related. Though, one advan-55

tage of our approach is that it is more straight-forward to implement on a56

large scale as we do in Section 3.3.57

Using these methods, we will be able recreate several previously known58

linear-algebraic results as well as new variations of these results solely using59

zero forcing parameters. Among these include:60

• Developing zero forcing processes on powers of graphs and relating these61

parameters to multiplicity lists (Section 3, Theorems 3.4 and 3.10).62

• Providing a uniform bound for multiplicities of eigenvalues for trees63

(Theorem 3.14).64

• Developing an improved bound for the minimum number of distinct65

eigenvalues for a graph, qpGq, using zero forcing parameters (Theorem66

3.29).67
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• Providing a new argument, using only zero forcing parameters, that68

the tree in [10, Fig 3.1] requires a number of distinct eigenvalues two69

more than its diameter (Theorem 3.24).70

• Verifying that all ordered eigenvalues multiplicity lists for graphs with71

at most 6 vertices that are not listed in [2] are indeed not possible72

(Subsection 3.3).73

• Adapting the techniques from Section 3 to multiplicity lists for skew-74

symmetric matrices (Section 4).75

• Determining all realizable multiplicity lists for connected graphs on 576

vertices and providing realizations for each (Appendix A).77

2. Preliminaries78

We focus on studying finite, undirected graphs. However, in doing so,79

we may allow a graph to have multiple edges, a multigraph; or have loops,80

a looped graph; or both, a looped multigraph. We will call a graph simple if81

it is neither a multigraph nor a looped graph. A general graph is a graph,82

looped graph, multigraph or looped multigraph.83

For general graphs, we use the notation i „ j to denote that vertex i is84

adjacent to vertex j. In the case of looped graphs, i „ i denotes a loop at i.85

For multigraphs, i „! j denotes that there is exactly one edge between i and86

j; we call such an edge a singleton edge. The underlying graph of a general87

graph is a simple graph formed by removing all loops and/or removing all88

but one edge between every pair of adjacent vertices.89

Given a simple graph G, we define SpGq to be the set of all n ˆ n real90

symmetric matrices whereby the ij-entry, i ‰ j, is nonzero whenever i „ j91

and zero otherwise. The diagonal may be any combination of zero or nonzero92

entries.93

If G is a looped graph, then SpGq is defined to be the set of all n ˆ n94

symmetric matrices whereby the ij-entry is nonzero whenever i „ j and the95

ii diagonal entry must zero if there is no loop and must be nonzero if there96

is a loop at i.97

If G is a multigraph, then SpGq is defined to be the set of all n ˆ n98

symmetric matrices whereby the ij-entry is nonzero whenever i „! j (that99

is, there is exactly one edge between i and j), the ij-entry is zero whenever100

i  j and i ‰ j, and diagonal entries may be any combination of zero or101
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nonzero entries. (Note that entries corresponding to multiedges that are not102

a singleton edge may be zero or nonzero.)103

For looped multigraphs, SpGq is the set of matrices meeting both condi-104

tions above. However, we will not discern between loops and “multiloops”,105

so for all practical purposes, all loops are simple.106

In reverse, for a matrix A, the underlying graph of A is the simple graph107

G for which A P SpGq.108

Given a simple graph G, a loop configuration is a looped graph whose109

underlying graph is G. We will let Gloop be the loop configuration with all110

possible loops; and we will let G0 be the looped configuration with no loops.111

Similarly, an edge configuration of a multigraph G is a simple graph H112

obtained from G such that for each pair of vertices connected by multiedges,113

either one or no edge is kept.114

We will use the notation conf`pGq confepGq to denote the all of the loop115

and edge configurations of G respectively.116

For simple graphs, SpGq is the disjoint union of SpHq over all the loop117

configurations H of G. Notably, SpGq Ľ SpG0q; hence, going forward, we118

must be careful to specify whether G is a simple graph or a looped graph.119

Similarly, for a multigraph G, SpGq is the disjoint union of SpHq over all120

edge configurations H of G.121

Given a graph, looped graph or multigraph, G, one may wish to un-122

derstand the possible spectra (eigenvalues) of matrices in SpGq. This is a123

challenging task to say the least. However, a simpler problem is to determine124

the maximum nullity. For a general graph G, we define the maximum nullity125

as126

MpGq “ max
APSpGq

nullpAq.

A slightly more challenging problem that we will focus on is to de-127

termine the possible multiplicities of eigenvalues given a prescribed order.128

For a real symmetric matrix A, we say that A has ordered multiplicity129

list pm1,m2, . . . ,m`q if A has with distinct (necessarily real) eigenvalues130

λ1 ă λ2 ă ¨ ¨ ¨ ă λ` with corresponding multiplicities m1,m2, . . . ,m`. Ob-131

serve that for a general graph G and any A P SpGq, it must be the case that132

any ordered multiplicity list pm1,m2, . . . ,m`q has mi ďMpGq.133

2.1. Zero Forcing on Graphs, Multigraphs, and Looped Graphs134

The classical zero forcing process is a one-player game played on a simple135

graph G. The player selects some set of vertices S to initially colored blue;136
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all others are uncolored. After which, the color change rule is iteratively137

applied: If a blue vertex has exactly one uncolored neighbor, it “forces” (or138

colors) that neighbor to become blue. The rule is applied until no more forces139

can be made. A set S is a zero forcing set if after iteratively applying the140

rule all the vertices of G will eventually be colored blue. The goal of the141

game is to find the smallest zero forcing set, the size of which is called the142

zero forcing number of the graph G, denoted ZpGq.143

For looped graphs, the game is similar; however, the color change rule144

slightly different. If i has a loop, then if all but one vertex in the closed145

neighborhood of i (including i itself) is blue, then the neighborhood forces146

that vertex to be blue; the distinction from before is that i can be forced147

by its own neighborhood. And if i does not have a loop, then whenever all148

but one vertex in the open neighborhood of i (i.e., excluding i) is colored, i149

can force that vertex to be blue; the distinction from the color change rule150

for simple graphs is that if i does not have a loop, then it can force without151

being colored.152

In effect, the classical zero forcing rule for simple graphs only allows a153

force if a force would be possible over any possible loop configuration.154

For multigraphs, we take the color change rule to be where i can only155

force j whenever i „! j (i.e., i and j have a singleton edge).156

Remark 2.1. Let G be a simple graph and H a loop configuration of G.157

Then ZpHq ď ZpGq by definition.158

For simple graph G, we define the enhanced zero forcing number159

pZpGq “ max
HPconf`pGq

ZpHq.

Remark 2.2. Let G be a multigraph and H an edge configuration of G.160

Then ZpHq ď ZpGq by definition.161

For a multigraph graph G, we have162

qZpGq “ max
HPconfepGq

ZpHq.

Theorem 2.3 (Barioli et al. [9]). For a simple graph G,163

MpGq ď pZpGq ď ZpGq.
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Theorem 2.4 (see [24]). For a multigraph G,164

MpGq ď qZpGq ď ZpGq.

Hogben showed MpGq ď ZpGq for multigraphs G [24], but the fact that165

MpGq ď qZpGq ď ZpGq follows immediately from the definition of qZpGq.166

2.2. Positive Semi-definite Forcing and other variants167

The variations of zero forcing mentioned previously focused on the type168

of graph. In contrast, there are zero forcing variants that are motivated by169

further restrictions on matrices in SpGq. Let S`pGq be the set of all (sym-170

metric) positive semi-definite matrices within SpGq. The positive semidefinite171

maximum nullity of G is172

M`pGq “ max
APS`pGq

nullpAq.

Barrioli et al. defined positive semidefinite forcing for simple graphs [8]173

which was extended by Ekstrand et al. for multigraphs [17]. This variant is174

the same as zero forcing for the different types of general graphs, except with175

a subtle change to the color change rule. Let X be the set of colored vertices,176

then consider the induced subgraph on V pGq´X with components Y1, . . . , Y`.177

A vertex u can force an uncolored vertex v if it could do so within any of the178

induced subgraphs on X Y Y1, X Y Y2 . . . or X Y Y`. In other words, for u179

to force a vertex v, v needs only to be the only relevant uncolored neighbor180

of u among the same uncolored component as v. For multigraphs, forces181

can only occur on singleton edges however multiedges are still considered for182

determining the connected components.183

Theorem 2.5 (Bariloli, et al. [8] and Ekstrand, et al. [17]). For simple graphs184

and multigraphs G,185

M`pGq ď Z`pGq

Similarly, we may define186

qZ`pGq “ max
HPconfepGq

Z`pHq.

Thus, M`pGq ď qZ`pGq ď Z`pGq.187
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Name Notation
Minimum Rank
Problem

Color Change
Rule

Classical [4] ZpGq symmetric

PSD forcing
[8]

Z`pGq
symmetric positive
semi-definite

forcing consid-
ers individual
uncolored com-
ponents

Skew forcing
[8]

Z´pGq
skew-symmetric (or
symmetric with 0 di-
agonal)

a vertex may
force without
being colored

Table 1: Summary of the different applications with their zero forcing variations.

It it worth remarking if i „! j in G, then for any matrix A P S`pGq, it188

must be the case that Aii, Ajj ‰ 0, as otherwise there is a 2 ˆ 2 principle189

submatrix with negative determinant. As a result, in the context of both190

for simple connected graph and positive semidefinite matrices and positive191

semidefinite forcing, we can assume that every non-isolated vertex has loops.192

Later in Section 4, we will consider skew-forcing where the matrices within193

SpGq are restricted to skew-symmetric matrices. We will define the specific194

variations at that time.195

Proposition 2.6. Let G be a multigraph and G1 its (simple) underlying196

graph. Suppose there is a minimum zero forcing set of G1, S such that there197

are a sequence resulting forces to color all the vertices of G that use only198

singleton edges in G. Then, S is also a zero forcing set of G, and ZpG1q “199

ZpGq.200

Proof. Suppose there is a zero forcing process on G1 starting with a minimum201

zero forcing set S and using only singleton edges for each force. Then every202

force in this process is also a valid force in G, so S is also a zero forcing set203

of G. Since ZpGq ď ZpG1q by definition, S is a minimum zero forcing set for204

G and ZpGq “ ZpG1q.205

3. Power zero forcing206

One of our main approaches will be to consider powers of graphs.207
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1 2 3 4

P4

1 2

3 4

ΓpP4, 2q

Figure 1: An example of G and ΓpG, rq, where G “ P3 and r “ 2.

For a simple graph a lazy walk is a walk that may remain at a vertex at208

each step, and its length is the number of steps. Let G be a simple graph209

and r a positive integer. We define the multigraph ΓpG, rq on the vertex set210

V pGq such that the number of edges between i and j is the number of lazy211

walks from i to j of length at most r.212

In some sense, ΓpG, rq is a graph power of G as a multigraph. However,213

we will not generally be concerned with the exact number of edges between214

two vertices. Rather, for each pair of vertices i, j, we only truly consider215

whether there is an edge between i and j, whether i and j form a singleton216

edge, or whether they form a multiedge.217

Example 3.1. Let G “ P4 be as shown in Figure 1 and r “ 2. Then there218

are three lazy walks of length at most r from 1 to 2, namely, p1, 2q, p1, 1, 2q,219

and p1, 2, 2q. In contrast, there is only one lazy walk of length at most r from220

1 to 3, which is p1, 2, 3q, and there is no such lazy walk from 1 to 4. Therefore,221

the graph ΓpP4, 2q is as shown in Figure 1. And the the edge configurations222

of ΓpP4, 2q are the graph on the vertex set t1, 2, 3, 4u such that t1, 3u and223

t2, 4u are edges yet t1, 4u is not an edge.224

Remark 3.2. Let G be a graph and A P SpGq. Suppose ppxq is a polynomial225

of degree r with r ě 1. Then ppAq is a matrix of SpHq for some edge226

configuration H of ΓpG, rq.227

Definition 3.3. Let G be a simple graph. Define228

ZprqpGq “ qZpΓpG, rqq and Z
prq
` pGq “ qZ`pΓpG, rqq.

Note that Zp1qpGq “ ZpGq and Z
p1q
` pGq “ Z`pGq.229

Theorem 3.4. Let G be a simple graph and A P SpGq. Suppose m1 ě ¨ ¨ ¨ ě230

m` are the eigenvalue multiplicities of A. Then, for any r “ 1, . . . , `,231

r
ÿ

i“1

mi ď ZprqpGq.
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Proof. Suppose A has q distinct eigenvalues λ1, . . . , λq with multiplicities232

m1 ě ¨ ¨ ¨ ě mq. For a given r “ 1, . . . , n, let ppxq “ px ´ λ1q ¨ ¨ ¨ px ´ λrq.233

Thus, ppAq is in SpHq for some configuration H of ΓpG, rq and has nullity234
řr
i“1mi. Therefore,235

r
ÿ

i“1

mi “ nullpppAqq ď ZpHq ď ZprqpGq.

This completes the proof.236

Example 3.5. Consider the path Pn on vertices tv1, . . . , vnu in the path237

order. Since MpPnq “ 1, any matrix A P SpPnq has n distinct eigenvalue238

with multiplicities m1 “ ¨ ¨ ¨ “ mn “ 1. On the other hand, we claim239

that for any given r ď n and any edge configuration H of ΓpPn, rq, the set240

B “ t1, . . . , ru is a zero forcing set of H. To see this, first observe that241

tvi, vi`ru is an edge in H and tvi, vju, j ě i ` r ` 1, is not an edge in H242

regardless the choice of the edge configuration of ΓpPn, rq. Therefore, one243

may perform the forces vi Ñ vi`r for i “ 1, 2, . . . , n´ r sequentially to color244

every vertex in the graph. Therefore,245

r “
r
ÿ

i“1

mi ď ZprqpPnq ď r

and the inequalities in Theorem 3.4 are tight for any r.246

Suppose a matrix A P SpGq has eigenvalue multiplicities m1 ě ¨ ¨ ¨ ě m`.247

Now we have two upper bounds for
řr
i“1mi. One is the upper bound ZprqpGq248

given by Theorem 3.4, and the other is the upper bound rZpGq given by the249

classical zero forcing number. The following two examples shows that they250

are, in general, not comparable.251

Example 3.6. Let K1,n´1 be the star on vertices tv1, . . . , vnu such that vn252

is the center. The adjacency matrix of K1,n´1 has multiplicities m1 “ n ´ 2253

and m2 “ m3 “ 1. Since any configuration of ΓpK1,n´1, 2q contains at least254

an edge (e.g., tv1, v2u), Z
p2qpGq ď n ´ 1. Thus, m1 ` m2 “ n ´ 1 implies255

Zp2qpGq “ n ´ 1. In this case, the bound Zp2qpGq outperforms the bound256

2ZpGq.257
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G

1 2
3

4 5

6

7

8

ΓpG, 2q

Figure 2: A graph G and the corresponding ΓpG, 2q, where a thick line means two or more
multi-edges.

Example 3.7. Let G be the graph shown in Figure 2. Since t1, 6u is a258

zero forcing set of G, ZpGq “ 2. On the other hand, one may calculate259

Zp2qpGq “ 5 since ZpΓpG, 2qq “ 5, ZpHq “ 5, and260

ZpHq ď Zp2qpGq ď ZpΓpG, 2qq,

where H is the configuration of ΓpG, 2q with all potential edges present.261

Alternatively, the code [27] for computing Zp2qpGq is available. Therefore,262

2ZpGq ď Zp2qpGq.263

In general, Corollary 3.8 shows several upper bounds are available for the264

sum of multiplicities.265

Corollary 3.8. Let r P rns and r1, . . . , rk an integer partition of r. Then266

r
ÿ

i“1

mi ď

k
ÿ

i“1

ZpriqpGq.

267

Up until now, we have focused solely on the arbitrary sum of multiplicities268

with no consideration of the order of the eigenvalues. Let Λ “ tλ1, . . . , λqu269

be a set of distinct real numbers with λ1 ă ¨ ¨ ¨ ă λq. Any subset S of Λ can270

be partitioned into maximal consecutive segments; that is, S “
Ť

i si such271

that each si is of the form tλa, λa`1, . . . , λbu for some a and b. If a segment272

contains λ1 or λn, then it is called a boundary segment. We define the evenly273

consecutive order of a segment si as274

eΛpsiq “

#

|si| if si is boundary;

2
Q

|si|
2

U

otherwise,
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and the evenly consecutive order of S as275

eΛpSq “
q
ÿ

i“1

eΛpsiq.

Note that the formula 2
P

k
2

T

is simply the smallest even number greater than276

or equal to k.277

Example 3.9. If Λ “ tλ1, . . . , λ10u is a set of real numbers with λ1 ă ¨ ¨ ¨ ă278

λ10 and S “ tλ1, λ5, λ6, λ7u, then the maximal consecutive segments of S are279

s1 “ tλ1u and s2 “ tλ5, λ6, λ7u, where s1 is boundary and s2 is not. Thus,280

we have eΛps1q “ 1, eΛps2q “ 4, and eΛpSq “ 5. Under this setting, one may281

construct a polynomial282

ppxq “ px´ λ1qpx´ λ5qpx´ λ6qpx´ λ7q
2

of degree eΛpSq “ 5 such that ppλq “ 0 if λ P S and ppλq ą 0 if λ P ΛzS.283

The polynomial is shown in in Figure 3.284

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Figure 3: An illustration of ppxq in Example 3.9

Theorem 3.10. Let G be a graph and A P SpGq with distinct eigenval-285

ues Λ “ tλ1, . . . , λqu, λ1 ă ¨ ¨ ¨ ă λq, and the corresponding multiplicities286

m1, . . . ,mq. Then287
ÿ

λiPS

mi ď Z
prq
` pGq

for any S Ď Λ with r “ eΛpSq.288

Proof. Let A be a matrix in SpGq with eigenvalues λ1 ă ¨ ¨ ¨ ă λq and289

multiplicities m1, . . . ,mq, respectively. For a given r “ 1, . . . , n and a subset290

S of Λ with eΛpSq “ r, there is a polynomial ppxq such that ppλq “ 0 if λ P S291

and ppλq ą 0 if λ P ΛzS. As a consequence, ppAq is a positive semidefinite292

matrix in SpΓpG, rqq and has nullity
ř

λiPS
mi. This means293

ÿ

λiPS

mi “ nullpppAqq ď Z`pHq ď Z
prq
` pGq.

This completes the proof.294
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Example 3.11. For similar reasons in Examples 3.5, Z
prq
` pPnq “ r for any295

r ď n.296

Recall that qpGq is the minimum number of distinct eigenvalues among297

A P SpGq.298

Corollary 3.12. Let G be a graph on n vertices. Let pr be the smallest r such299

that ZprqpGq “ n. Then qpGq ě pr.300

301

On a simple graph G, a path from vertex i to vertex j is called a unique302

shortest path. Let pk be the number of vertices on the longest unique shortest303

path between arbitrary two vertices of G. It was known [1] that qpGq ě pk.304

The next proposition explains that the pr in Corollary 3.12 is the same as pk.305

Proposition 3.13. Let G be a graph on n vertices and r ą 0 an integer.306

Then the following are equivalent.307

(1) ZprqpGq “ n.308

(2) Z
prq
` pGq “ n.309

(3) The edge configurations of ΓpG, rq contain the empty graph.310

(4) Any unique shortest path on G contains at most r vertices.311

Proof. Note that ZpHq “ |V pHq| if and only if Z`pHq “ |V pHq|, and these312

two conditions are equivalent to H is an empty graph. Therefore, (1), (2),313

and (3) are equivalent.314

Suppose the longest unique shortest path on G is on ` vertices, namely,315

v1, . . . , v`. For any k ď ` ´ 1, the number of lazy walks from v1 to vk`1 of316

length at most k is 1, so there is a singleton edge between v1 and vk`1 in317

ΓpG, kq. If k ě `, then between any i, j P V pGq, there are at least two lazy318

walks of length at most k, so the empty graph is a configuration of ΓpG, kq.319

Conversely, if ΓpG, rq contains the empty graph, then by definition, there is320

no unique shortest path of length r or less.321

Theorem 3.14. Let T be a tree. Let L1 be set of leaves of T and `1 “ |L1|.322

Let Lj be the set of vertices whose shortest distance to a leaf is j ´ 1 and323

denote `i “ |Li|. Then,324

ZpkqpT q ď
k
ÿ

i“1

`i ´ 1

for which Lk is nonempty.325
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Proof. We show that ZpkqpT q ď
řk
i“1 `i ´ 1 by carefully choosing a path P326

with k vertices and showing
´

Ťk
i“1 Li

¯

zV pP q is a zero forcing set for any327

edge configuration of ΓpT, kq.328

Pick a vertex vk in Lk. By the definition of Lk, there is a path P between329

vk and a leaf v1 of distance k ´ 1. Label V pP q by vk, . . . , v1 following the330

path order.331

Now, pick an arbitrary edge configuration H of ΓpG, kq and color every332

vertices in
´

Ťk
i“1 Li

¯

zV pP q blue.333

Claim: All components of T ´ P can be colored in H.334

Proof of Claim: Choose a component of T´P , and call it T 1. Inductively,335

for any j ě k, if vertices in
Ťj
i“1 Li X T 1 are blue, then Lj`1 X T 1 may turn336

blue in the next step. Let x P Lj`1 X T 1 be a white vertex. Then x has a337

neighbor y P Lj`1´k X T 1 in H. By the inductive hypothesis, y is blue and338

every neighbor of y is blue except for x, so y may force x to blue. Therefore,339

Lk`1XT
1, Lk`2XT

1, . . . will be blue and eventually every vertex in T 1 is blue.340

The completes the proof of the claim. 4341

Since all vertices except for v1, . . . , vk can necessarily be colored, it re-342

mains to show that P itself can be colored.343

For vk, there must be a vertex, uk, such that dpvk, ukq “ k and dpvk´1, ukq “344

k ` 1 and uk is colored (if not, then vk is less than distance k away from a345

leaf, and hence not in Lk.) Therefore, all vertices of within distance k of uk346

are colored, except for vk and uk forces vk. From there, consider the path,347

uk, uk´1, uk´2, . . . u1, vk in T . Necessarily, since T is a tree, ui is exactly dis-348

tance k from vi and all other vertices within distance k of ui are colored349

(otherwise, uk would not be distance k from vk in T ). Hence, inductively,350

we have that, starting with i “ k as above and decrementing i, ui forces vi.351

This completes the proof.352

We remark that for i “ 1, Theorem 3.14 says that the maximum nullity353

of a tree is at most the number of leaves minus one. In contrast, it is known354

that the maximum nullity is exactly the path-cover number of the tree. In355

which case, Theorem 3.14 can be off by a factor of 2. Hence, for most trees,356

it is also likely that for higher values of k, Theorem 3.14 does not achieve357

equality for most trees.358

Proposition 3.15. Let G be a graph on n vertices. The following are equiv-359

alent.360
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(1) ZprqpGq “ r for some r.361

(2) Z
prq
` pGq “ r for some r.362

(3) qpGq “ n363

(4) MpGq “ 1364

(5) G is a path.365

Proof. By definition, (3) and (4) are equivalent. It is known that (4) and (5)366

are equivalent; see, e.g., [11]. If G is a path, then (1) and (2) are true by367

Examples 3.5 and 3.11.368

Suppose Z
prq
` pGq “ r for some r. Let m1, . . . ,mr be any r eigenvalue369

multiplicities of a matrix A P SpGq. Since eigenvalue multiplicities are at370

least one,371

r ď
r
ÿ

i“1

mi ď Z
prq
` pGq ď ZprqpGq “ r

and thus Z
prq
` pGq “ r. Moreover, since the choices of m1, . . . ,mr and A P372

SpGq are arbitrary, MpGq “ 1.373

Theorem 3.16. Let G be a connected graph on n vertices. Then the following374

are equivalent.375

(1) Zp2qpGq ď 3.376

(2) qpGq ě n´ 1.377

(3) G is either a path with an extra edge joining two vertices of distance378

two, a path with a leaf on an internal vertex, or a path.379

Proof. According to [11, Theorem 51], (2) and (3) are equivalent. Suppose380

Z
p2q
` pGq ď 3. Let A P SpGq with eigenvalue multiplicities m1 ě m2 ě ¨ ¨ ¨ ě381

mq. Since m1`m2 ď 3 and m2 ě 1, we have m1 ď 2 and 1 ě m2 ě ¨ ¨ ¨ ě mq.382

Therefore, qpGq ě n´ 1.383

Let G be a path with an extra edge joining two vertices of distance two.384

Thus, G can also be obtained from a Pn´1, labeled by v1, . . . , vn´1, by adding385

a new vertex x joining two consecutive vertices. Under this setting, the386

tv1, v2, xu is a zero forcing set for any edge configuration of ΓpG, 2q. Hence387

Zp2qpGq ď 3.388
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Let G be a path with a leaf x on an internal vertex. Similarly, tv1, v2, xu389

is a zero forcing set for any edge configuration of ΓpG, 2q. Hence Zp2qpGq ď 3.390

Finally, Example 3.5 has that Zp2qpPnq “ 2 ď 3.391

Theorem 3.17. Let G be a connected graph on n vertices. Then the following392

are equivalent.393

(1) Z
p2q
` pGq ď 3.394

(2) MpGq ď 2 and any matrix in SpGq does not have consecutive multiple395

eigenvalue.396

(3) G is either a generalized 3-star, a generalized 3-sun, a path with an397

extra edge joining two vertices of distance two, or a path.398

Proof. Suppose Z
p2q
` pGq ď 3. Then mi ` mj ď 3 for any two consecutive399

eigenvalues, so MpGq ď 2 and there is no consecutive multiple eigenvalues.400

Suppose G is a graph not allowing two consecutive multiple eigenvalues.401

Then by [13, Corollary 5.5], G is either a generalized star, a generalized 3-402

sun, a path with an extra edge joining two vertices of distance 2, or a path.403

By examining the maximum nullities of these graphs, (2) implies (3).404

If G is a generalized 3-star, let v be the center vertex, and x, y any two405

of the three neighbors of v. If G is a generalized 3-sun or a a path with an406

extra edge joining two vertices of distance two, let v, x, y be the three vertices407

on the unique cycle. Thus, tv, x, yu is a PSD zero forcing set of any edge408

configuration of ΓpG, 2q. Along with Example 3.11, (3) implies (1).409

3.1. Restrictions caused by K2,3410

Sometimes not all configurations in ΓpG, kq is a graph of Ak for some411

A P SpGq. Here we will see some examples where K2,3 and K2,3 ` e limits412

the achievable configurations in ΓpG, 2q and provides a detailed description413

on the multiplicity lists.414

Lemma 3.18. Let G be a graph with an induced K2,3 or K2,3` e whose two415

parts are X “ tx1, x2u and Y “ ty1, y2, y3u. Suppose the only paths of length416

two from yi to yj, i ‰ j, are through x1 and x2. Then for any A P SpGq, the417

graph of A2 has at least one edge on Y , so the sum of any two eigenvalue418

multiplicities of A is bounded above by419

max
HPconfepΓpG,2qq
EpHrY sq‰H

ZpHq.
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y1 y2 y3

x1 x2

K2,3

y1 y2 y3

x1 x2

K2,3 ` e

Figure 4: Labeled K2,3 and K2,3 ` e

Proof. Let A “
“

auv
‰

. Consider the three products ax1y1ay1x2 , ax1y2ay2x2 ,420

ax1y3ay3x2 . Since A P SpGq, these products are nonzero. By the pigeonhole421

principle, two of them have the same sign, say pax1yiayix2qpax1yjayjx2q ą 0.422

Equivalently, this means payix1ax1yjqpayix2ax1yjq ą 0. Therefore, the yiyj-423

entry of A2 is nonzero.424

Let λ1 and λ2 be two eigenvalues of A with multiplicities m1 and m2.425

Then the matrix pA´ λ1IqpA´ λ2Iq has nullity m1 `m2, and its yiyj-entry426

is nonzero, so its graph is some graph H P confepΓpG, 2qq with EpHrY sq ‰427

H.428

Example 3.19. Let G be K2,3 or K2,3`e. The configurations of ΓpG, 2q can429

be any graph on 5 vertices, so Zp2qpGq “ 5. Meanwhile, the longest unique430

shortest path on K2,3 are on 2 vertices, so it seems that qpGq can possibly be431

2. However, if we only focus on the configurations H of ΓpG, 2q with at least432

an edge, then its zero forcing number is at most 4 since one may color every433

vertex except for one of the two endpoints of the edge. By Lemma 3.18 the434

sum of any two multiplicities is bounded above by 4 and qpGq ě 3.435

y1 y2 y3

x1 x2

z

G170

y1 y2 y3

x1 x2

z

G179

Figure 5: Labeled G170 and G179
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Example 3.20. Following the same arguments as in Example 3.19, the two436

graphs G in Figure 5 have qpGq ě 3 but they do not have any unique shortest437

path on 3 vertices.438

Let G` be obtained from P` and K2,3 by joining the y1 in K2,3 with an439

endpoint of P`. Let G` ` e be the graph obtained from G` by adding the440

edge tx1, x2u. See Figure 6.441

y1 y2 y3

x1

x2

e
p1p`´1p`

Figure 6: The graph G` and the optional edge e

Theorem 3.21. Let G be G` or G`` e as shown in Figure 6 and A P SpGq.442

Then the sum of any two eigenvalue multiplicities of A is at most 4.443

Proof. Let A P SpG`q and λ1, λ2 two eigenvalues of A with multiplicities444

m1,m2. Let H P confepΓpG, 2qq be the graph of pA ´ λ1IqpA ´ λ2Iq. Then445

H contains no edges between vertices in ty2, y3u and vertices in tp1, . . . , p`u.446

According to Lemma 3.18, H contains at least one of ty1, y2u, ty1, y3u,447

and ty2, y3u as an edge.448

• If ty1, y2u P EpHq, let u “ y2 and v “ y1.449

• If ty1, y3u P EpHq, let u “ y3 and v “ y1.450

• If ty2, y3u P EpHq, let u “ y3 and v “ y2.451

Let U “ tx1, x2, x3, y1, y2u. Now Uztvu is a zero forcing set of H by the452

process u Ñ v, x1 Ñ p1, y1 Ñ p2, p1 Ñ p3, . . ., p`´2 Ñ p`. In either case,453

ZpHq ď 4, so m1 `m2 ď 4.454

Remark 3.22. The graphs G1 and G1 ` e are G125 and G138 in An Atlas455

of Graphs [31]. In a previous study, [3, Section 4.3], these two graphs are456

the “remaining case” that need additional efforts to rule out the ordered457

multiplicity lists (1,3,2) and (2,3,1).458
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c

w1

w2

w3 w4

w5

Figure 7: A wheel graph W6.

The next example shows the similar techniques in Lemma 3.18 can be459

applied to other graphs.460

Example 3.23. Let G “ W6 be the wheel graph as shown in Figure 7461

and A “
“

auv
‰

P SpGq. By replacing A with DAD, where D is a diagonal462

matrix whose diagonal entries are 1 or ´1, we may assume acwi
ą 0 for each463

i “ 1, . . . , 5.464

Let H be the graph of A2. By writing ` or ´ on the 5-cycle induced on465

tw1, . . . , w5u, there must be two consecutive edges twi, wi´1u and twi, wi`1u466

with the same signs, where the index are modulo 5. That is, awi´1wi
awiwi`1

ą467

0. Since awi´1cacwi`1
ą 0, the pwi´1, wi`1q-entry of A2 is nonzero. Therefore,468

pA ´ λ1IqpA ´ λ2Iq is not a zero matrix for any eigenvalues λ1, λ2 of A, so469

qpGq ě 3. Note that W6 is the graph G187 in the atlas [31], and this provides470

an alternative proof of [14, Lemma 6.14].471

3.2. A bound for qpGq472

We now show that our techniques with some extra analysis are able to473

show that qpW q ą diampW q ` 1 for the W shown in Figure 8. This example474

was provided by Barioli and Fallat [10, Fig 3.1].475

1 5 6 10 11 15

2 4 7 9 12 14

3 8 13

16

Figure 8: A tree W with qpW q “ 8 and diampW q ` 1 “ 7
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Theorem 3.24. [10] Let W be the graph in Figure 8. Then qpW q “ 8 while476

diampW q ` 1 “ 7.477

Here, we provide an alternative proof of Theorem 3.24 using just Z, Z`,478

Zprq, and Zprq (for r “ 2 and 5). This effectively abstracts all of the linear479

algebra in place of zero forcing parameters.480

Lemma 3.25. Let W be the graph shown in Figure 8, we have481

• Z`pW q “ 1,482

• ZpW q “ 4, and483

• Zp2qpW q “ 7.484

Proof. The fact that Z`pW q “ 1 and ZpW q “ 4 come from direct computa-485

tion (or the algorithm in [18]). Using the labels in Figure 8, t1, 2, 6, 7, 11, 12, 16u486

is a zero forcing set for any edge configuration of ΓpW, 2q, so Zp2qpW q ď 7.487

(This direction of inequality is all we need for proving Theorem 3.24.) The488

optimality of this zero forcing sets can be verified by exhaustion via com-489

puter, see [22].490

Lemma 3.26. For any edge configuration H of ΓpW, 5q, either ZpHq ď 13491

or Z`pHq ď 11.492

Proof. Let H be a edge configuration of ΓpW, 5q. We will use the labels in493

Figure 8.494

Suppose t1, 5u, t6, 10u, and t11, 15u are edges in H. Then the subset495

S1 “ V pHqzt5, 10, 15u is a zero forcing set ofH since 1, 6, 11 will force 5, 10, 15496

to be blue, respectively. Therefore, ZpHq ď 13 in this case.497

In fact, S1 is still a zero forcing set of H even if one of t1, 5u, t6, 10u, and498

t11, 15u is not an edge, say t11, 15u. One may perform the forces 1 Ñ 5 and499

6 Ñ 10, then 2 Ñ 15 to color every vertex. Similarly, ZpHq ď 13 in this500

case.501

Suppose at least two of t1, 5u, t6, 10u, and t11, 15u are not an edge in H,502

say t6, 10u, and t11, 15u. (Here t1, 5u might or might not be an edge of H.)503

By the assumption, t5, 6, 10, 11, 15u is an independent set since two leaves504

from different branches, e.g., 5 and 6, are of distance 6 and are not adjacent505

to each other in H. Let S2 “ V pHqzt5, 6, 10, 11, 15u. Then S2 is a PSD zero506

forcing set of H since each of t5, 6, 10, 11, 15u is adjacent to a blue vertex in507

H (of distance 5 in W ) and this vertex can force it to be blue. Therefore,508

Z`pHq ď 11 for the remaining cases.509
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Corollary 3.27. Let A P SpW q. Then one of the following holds.510

• The sum of any five eigenvalue multiplicities of A is at most 13.511

• The sum of any five consecutive eigenvalue multiplicities of A is at most512

11.513

We are now ready to prove Theorem 3.24514

Proof of Theorem 3.24. It is obvious that diampW q` 1 “ 7, and it is known515

that 7 is a lower bound for qpW q. Suppose, for the purpose of yielding a516

contradiction, that qpW q “ 7.517

Let A be a matrix in SpW q with 7 distinct eigenvalue518

λ1 ď λ2 ď ¨ ¨ ¨ ď λ7.

Letmi be the multiplicity of λi for i “ 1, . . . , 7. Since Z`pW q “ 1 Lemma 3.25,519

m1 “ m7 “ 1.520

According to Corollary 3.27, one of the two cases must holds. Since521

m2 ` ¨ ¨ ¨ `m6 “ 16´m1 ´m7 “ 14,

the first case in Corollary 3.27 does not hold. Therefore the sum of any five522

consecutive eigenvalue multiplicities of A is at most 11. However, this means523

m1 ` ¨ ¨ ¨ `m5 ď 11 ùñ m6 ě 4

and524

m3 ` ¨ ¨ ¨ `m7 ď 11 ùñ m2 ě 4.

Consequently, m2 `m6 ě 8, violating the fact Zp2qpW q ď 7 by Lemma 3.25.525

Therefore, qpW q “ 8. (The adjacency matrix of W with the diagonal entry526

of 16 set to 1 has 8 distinct eigenvalues.)527

528

Remark 3.28. Kim and Shader [28] generalized W into the family of pk, `q-529

whirl graphs, where k is the degree of the center vertices and ` is the number530

of vertices of the pending paths starting from the third level. Thus, W is531

the p3, 2q-whirl. Similar arguments in this subsection show that qpW 1q ą532

diampW q`1 for all p3, `q-whirl. However, Kim and Shader [28] showed using533

more technical methods that qpW 1q ě 9
8

diampW 1q ` 1
2

for all p3, `q-whirl.534
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We also have a more general bound for qpGq:535

Theorem 3.29. Let G be a connected graph on n vertices. Choose a pos-536

itive even integer k ď diampGq. Then, the minimum number of distinct537

eigenvalues for any matrix A P SpGq, qpGq, obeys538

qpGq ě
kn´ k2ZpGq

Z
pkq
` pGq

.

Proof. Choose A P SpGq with the minimum number of distinct eigenvalues,539

q “ qpGq, and let m1, . . . ,mq be the multiplicities. Necessarily, n “ m1`¨ ¨ ¨`540

mq. On the other hand, by Theorem 3.10, the sum mi`mi`1`. . .`mi`k´1 ď541

Z
pk`1q
` for any applicable i, and any remaining mj ď ZpGq. Therefore we542

have,543

n “ m1 ` ¨ ¨ ¨ `mq

ď

Y q

k

]

Z
pkq
` pGq ` pq%kqZpGq

“
q

k
Z
pkq
` pGq ´

pq%kq

k
Z
pkq
` pGq ` pq%kqZpGq

ď
q

k
Z
pkq
` pGq ` pq%kqZpGq

ď
q

k
Z
pkq
` pGq ` kZpGq

where pq%kq denotes the remainder of q divided by k. Solving for q completes544

the proof.545

3.3. IEP-G for graphs on six vertices546

One of the original motivations of this study was to verify the results547

from [2] using only zero forcing parameters. In contrast, [2] utilizes an array548

of different techniques to narrow down the realizable lists.549

As it turns out, using zero forcing parameters on powers of graphs is. . .550

powerful. . . as we are able to remove almost all unobtainable multiplicity lists551

for graphs on connected 6 vertices. To achieve this, we apply the following552

results553

• Theorem 3.4 for r “ 1, 2, 3, and554
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• Theorem 3.10 for r “ 1, 2 using Theorem 3.21 regarding K2,3 as an555

induced subgraph where appropriate.556

Upon implementing this, we discovered that for connected graphs on six557

vertices, there is no distinction between computing and applying qZpΓpG, rqq558

and ZpΓpG, rqq or even qZ`pΓpG, rqq versus Z`pΓpG, rqq. However, conceiv-559

ably, there may be a case, for larger graphs, where qZpΓpG, rqq ă ZpΓpG, rqq.560

However, the computation times for Z and Z` are substantially faster than561

qZ and qZ` respectively.562

The end result is that the zero forcing parameters are able to narrow down563

the realizable lists for all but 13 graphs on 6 vertices. The lists that remain564

from our method are listed in Table 2. In most all cases, these remaining565

cases are the same graphs and lists requiring additional analysis or auxiliary566

results within [2]. In that previous study, the authors utilize previous known567

results on the minimum number of distinct eigenvalue (e.g., “q”) as well as568

specialized results which reduces to six exception cases. In contrast, we utilize569

no prior knowledge on the number of distinct eigenvalues and simply compute570

zero forcing parameters. In many cases (thought not all), the zero forcing571

parameters are able to accurately imply the minimum number of distinct572

eigenvalues correctly. The specialized cases include unicyclic graphs with an573

odd cycle [13], eigenvalues of trees [26], the cycle [19] or other exceptional574

cases [2] and are summarized in Table 2.575

We remark that the method induced by Theorems 3.4, 3.10, and 3.21 are576

able to provide more streamlined certificates for the viable multiplicity lists577

for G125 and G138 (as opposed to [2]) as well as G170, G179 and G187 (as578

opposed to [14]).579

4. Skew-Symmetric Matrices580

A skew-symmetric matrix with real entries has A “ ´AJ. One basic581

fact that follows is that all of the eigenvalues of a skew-symmetric matrix582

are purely imaginary, and in particular, the eigenvalues of iA are necessarily583

real. We denote the eigenvalues of skew-symmetric matrix A as λi with584

Impλ1q ď ¨ ¨ ¨ ď Impλnq. Note that since the eigenvalues of a matrix with real585

entries must come in conjugate pairs, we have that Impλkq “ ´ Impλn`1´kq.586

Since the eigenvalues of A can be ordered along the imaginary axis, we can587

study the ordered eigenvalue multiplicity list problem for skew-symmetric588

matrices. We will let m1, . . . ,m` denote the multiplicities of the eigenvalues589
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Graph Failed Multiplicity Lists Reason
G77 1221 Parter–Wiener Theorem [26]
G78 1221 Parter–Wiener Theorem [26]
G92 2112 Odd-Unicyclic [13]
G95 2112 Odd-Unicyclic [13]
G100 2112 Odd-Unicyclic [13]
G104 2112 Odd-Unicyclic [13]
G105 (2,1,2)1, 1(2,1,2) Cycle [32]
G117 132, 213, 231, 312 Exceptional in [2]
G121 132, 231 Exceptional in [2]
G133 132, 231 Exceptional in [2]
G153 312, 213 Exceptional in [2]
G187 33 Wheel, Example 3.23
G189 33 Previous Results on qpGq (see [14])

Table 2: A table of the multiplicity lists that Theorems 3.4, 3.10, and 3.21 are unable to
rule out. These multiplicity lists can be ruled out by other methods as cited on the right.

λ1, . . . , λn of A, and the list pm1, . . . ,m`q is called the ordered multiplicity list590

of A. Indeed, the skew-symmetry leads to additional rules and constraints591

not present in other cases of the eigenvalue multiplicity list problem.592

For this section regarding skew-symmetric matrices, we will let Z´pGq593

denote the skew-forcing number of G. As it turns out for a general graph,594

Z´pGq “ ZpG0q where G0 is a looped graph (perhaps a multigraph) with no595

loops. We will let S´pGq denote all n ˆ n skew-symmetric matrices whose596

underlying graph is G. Lastly, we will generalize the notation ΓpG, rq for597

some integer r into ΓpG,Lq for some set L of integers. We define ΓpG,Lq as598

a multigraph on the vertex set V pGq such that the number of edges between599

i and j is the number of (non-lazy) walks from i to j with length in the set600

L. Therefore, ΓpG, rq “ ΓpG, t0, . . . , ruq.601

To illustrate the difference between the general case and the skew-symmetric602

case, we have the following.603

Lemma 4.1. Let G be a graph on n vertices, let A P S´pGq and let m1, . . . ,m`604

be the ordered eigenvalue multiplicity list of A.605

Then,606

1. the list m1,m2 . . . ,m` must be palindromic (i.e., the same as its re-607

verse).608
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2. for k ‰ ``1
2

(` is odd; or any k for ` even), mk ď ZpGloopq609

3. for k “ 1 or `, mk ď Z`pGq.610

4. if ` is odd (which is necessarily true if n is odd), then m ``1
2
ď Z´pGq611

5. for any k ‰ ``1
2

, mk `m``1´k ď ZpΓpG, t2uq612

Proof. Item 1 follows from the fact that the eigenvalues of a real skew-613

symmetric matrix are purely imaginary and must come in conjugate pairs.614

From the previous item, A P S´pGq has 0 as an eigenvalue if ` is odd, in615

which case, the multiplicity of 0 as an eigenvalue is given by m ``1
2

. Therefore,616

all other eigenvalues are non-zero, and their multiplicities are the nullity of617

A ´ λI, which is bounded by ZpGloopq since the diagonal entries of A ´ λI618

are all nonzero. Similarly, the multiplicity of 0 is the nullity of A which is619

bounded above by Z´pGq. This gives items 2 and 4.620

For item 3, note that for any matrix A P S´pGq, ip´A ` λ1Iq an ipA ´621

λ`Iq are positive semi-definitive Hermitian matrices. It follows from [8] that622

Z`pGq upper bounds m1 and m`.623

For item 5, since the two corresponding eigenvalues come in conjugate624

pairs, we can consider the matrix pA´ λ1IqpA´ λ1Iq “ A2 ´ λ2
1I where the625

quantity λ2
1 is necessarily real and negative. The underlying (simple) graph626

is necessarily an edge configuration of ΓpG, t2uq.627

vc
v3

v4

v1

v2

Figure 9: Bow-tie graph.

Lemma 4.2. Let G be a simple graph. Suppose the induced subgraph GrW s628

is a bow-tie (as shown in Figure 9) for some B “ tvc, v1, v2, v3, v4u Ď V pGq629

such that every path paths connecting the pairs tv1, v3u and tv2, v4u of length630

3 are through vertices in S. Then, for any A P S´pGq, either tv1, v3u or631

tv2, v4u is an edge of the underlying (simple) graph of A3 ´ λ2A.632

Proof. For convenience, we label v1, . . . , v4 and vc as 1, . . . , 4 and c. Let633

A “
“

aij
‰

. We may replace A by DAD for some signature matrix D and634

assume that a12, a2c, ac3, and a34 are positive. Since the 1, 3-entry of A3 is635

a12a2cac3 ` a1cac4a43,
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we know that a1cac4 ă 0 if pA3q13 “ 0. Meanwhile, the 2, 4-entry of A3 is636

a2cac3a34 ` a21a1cac4,

so a1cac4 ą 0 if pA3q24 “ 0. Therefore, at least one of pA3q13 and pA3q24 is637

nonzero. Since λ2A contributes nothing to the 1, 3-entry nor the 2, 4-entry,638

A3 ´ λ2A has at least one nonzero off-diagonal entry.639

Example 4.3. Consider the bow-tie graph in Figure 9. If either of the lists640

p2, 1, 2q or p1, 3, 1q are possible for some A P S´pGq its minimal polynomial641

is xpx´ λqpx` λq “ x3 ´ λ2x, and so A3 ´ λ2A has nullity 5 and is equal to642

O. However, Lemma 4.2 says that any underlying graph H of A3´λ2A must643

have an edge, in which case, ZpHq ă 5, a contradiction. Hence, neither of644

the the multiplicity lists p2, 1, 2q nor p1, 3, 1q are possible.645

Recall that the graph ΓpG, t1, 3, 5, . . . , |S|uq is the multigraph formed on646

the vertex set of G and the number of edges between i and j is the number647

of odd-length walks between them of at most length |S|.648

Lemma 4.4. Let A P S´pGq and λ1, . . . , λ` its eigenvalues with Impλ1q ă649

¨ ¨ ¨ ă Impλ`q. Suppose that ` is odd and let c “ ``1
2

. Then for any set650

S Ď t1, . . . , `u such that c P S and `´ i` 1 P S if and only if i P S, the651

polynomial652

ppAq “
ź

iPS

pA´ λiIq

is skew-symmetric, and ppAq is a matrix in SpHq for some edge configuration653

H of ΓpG, t1, 3, 5, . . . , |S|u.654

Proof. Since λj “ λ`´j`1,655

ppAq “
ź

iPS

pA´ λiIq “ A
ź

iPS
iăc

pA2
´ λ2

i Iq.

Since656

ppAqJ “ AJ
ź

iPS
iăc

ppA2
q
J
´ λ2

i Iq “ ´A
ź

iPS
iăc

pp´Aq2 ´ λ2
i Iq “ ´ppAq,

the matrix ppAq is a skew-symmetric matrix. Further, if the pa, bq-entry of657

the matrix ppAq is nonzero, then there must be a walk from a to b of odd-658

length in G as at least one of the odd powers of A must have a nonzero pa, bq659

entry.660
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Lemma 4.5. Let G be a graph and A P S´pGq. Let λ1, . . . , λ` be the distinct661

eigenvalues of A with Impλ1q ă ¨ ¨ ¨ ă Impλ`q. Suppose that ` is odd and let662

c “ ``1
2

. Then for any set S Ď t1, . . . , `u such that c P S and `´ i` 1 P S if663

and only if i P S,664

ÿ

jPS

mj ď Z´pΓpG, t1, 3, 5, . . . , |S|uq.

Proof. For any S with the given properties, the matrix665

ppAq “
ź

iPS

pA´ λiIq

has nullity
ř

jPSmj. By Lemma 4.4, ppAq is a matrix in SpHq for some edge666

configuration of ΓpG, t1, 3, 5, . . . , |S|u. Therefore,667

ÿ

jPS

mj ď nullpppAqq ď Z´pΓpG, t1, 3, 5, . . . , |S|uq,

finishing the proof.668

G30 ΓpG30, t1, 3uq

Figure 10: The graph G30 and the multigraph ΓpG30, t1, 3uq, where the thick edges denote
multiedges.

Example 4.6. For an example of an application of Lemma 4.5, consider the669

tree T in Figure 10, which is G30 in An Atlas of Graphs [31]. By Lemma 4.1,670

we have that the multiplicities of the nonzero eigenvalues is bounded by671

ZpT loopq “ 2; however, Z´pT q “ 1, so the multiplicity of 0 is bounded by 1.672

As a result, Lemma 4.1, p1, 3, 1q is not possible. Leaving two possible skew673

eigenvalue multiplicity lists: p1, 1, 1, 1, 1q and p2, 1, 2q.674

However, we now discount p2, 1, 2q using Lemma 4.5. Observe that there675

are two pairs of vertices that are exactly distance 3 in T . In particular,676

it is not possible to realize the empty graph in ΓpG, t1, 3uq, and therefore,677

Z´pΓpG, t1, 3uq ă 5. Hence, by Lemma 4.5 the list p2, 1, 2q is not possible.678
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G43 ΓpG43, t1, 3uq

Figure 11: The graph G30 and the multigraph ΓpG43, t1, 3uq, where the thick edges denote
multiedges.

Example 4.7. Consider the graph G45 in Figure 11. We have ZpG45q “ 2679

and Z´pΓpG45, t1, 3uqq “ 4. By Lemma 4.5, the sum of three eigenvalue680

multiplicity (including the one for 0) is at most 4. Therefore, p2, 1, 2q and681

p1, 3, 1q are not possible, and only p1, 1, 1, 1, 1q is possible.682

4.1. Skew IEP-G on graphs with five vertices683

Just as with the IEP-G on six vertices, we can apply our techniques to684

get a head start on the IEP-G for skew-symmetric matrices on five vertices.685

We apply Lemma 4.1, Lemma 4.2, and Lemma 4.5 to determine all possible686

multiplicity lists.687

This method is able to determine all but three realizable multiplicity lists.688

Two of which are for the tree on five vertices. The complete table of realizable689

skew multiplicity lists can be found in A.3 and corresponding matrices are690

in Appendix A.691

Theorem 4.8 ([30]). Let G be a graph and let m1pGq be the matching number692

of G. Then, the maximum rank over all matrices in S´pGq is exactly 2m1pGq693

In particular, for a star (i.e., G29), m1pT q “ 1, so the maximum rank is694

2. As a result, the sum of all non-central multiplicities is 2, so p1, 1, 1, 1, 1q695

and p2, 1, 2q are not possible, and any multiplicity list must be p1, 3, 1q.696

The other exceptional care is K2,3 ` e (see 4, G46.697

Proposition 4.9. For G46 the skew multiplicity list p2, 1, 2q is not feasible.698

Proof. Let G be the graph G46. Suppose A is a skew-symmetric matrix in699

S´pGq with its ordered multiplicity list p2, 1, 2q. By replacing A with 1
Impλq

A700

if necessary, we may assume the spectrum of A is t´ip2q, 0, ip2qu. Let701

A “

„

A11 A12

A21 O



,
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where A12 “ ´A
J
21.702

If rankpA21q “ 1, then rankpAq ď 3, violating the fact that 0 only has mul-703

tiplicity 1. Hence we assume rankpA12q “ 2. Suppose x “
“

x1 x2 x3 x4 x5

‰J
704

is a vector such that Ax “ 0. Then x1 “ x2 “ 0 since705

“

A12 O
‰

x “ 0

and A12 has full column-rank. Thus, the first two entries of any vector in the706

kernel of A is zero.707

By the spectrum of A,708

O “ ApA` iIqpA´ iIq “ ApA2
` Iq,

so the columns of A are vectors in the kernel of A. By the observation on709

vectors in the kernel of A and the fact that A2 ` I is symmetric, A2 has the710

form711
„

´I2 O2,3

O3,2 ?



.

This means ´aJ1 a3 “ 0, where aj is the j-th column of A. However, this is712

impossible since there is only one index, namely 2, where both a1 and a3 are713

nonzero.714

All remaining skew multiplicity lists can be found in the appendix with715

their realizations.716

5. Conclusion and Future Considerations717

The techniques developed and used in this article seem very promising,718

and we believe the results within here may just be the tip of the iceberg. We719

briefly pose possible directions for future considerations.720

In Section 3 it is mentioned that the number of distinct eigenvalues, qpGq721

has been proven by Kim and Shader to be as large as 9
8
|V pGq|, [28]. However,722

it has been speculated that qpGq may be superlinear if not exponential in723

|V pGq|. We would hope that the method of zero forcing on powers of graphs,724

would shine brighter line on this problem.725

In Section 3.3, it appears as though qZprqpGq and ZpΓpG, 2qq are equal726

for small graphs. Indeed, for the classical zero forcing parameter ZpGq “727

pZpGq “ MpGq for all graphs up to 7 vertices. However, it is not clear if728
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this would hold for larger graphs. It would be interesting to find an example729

where equality does not hold.730

Previous work on zero forcing and eigenvalue multiplicities was considered731

in [20] using a newly defined variation of zero forcing: rigid linkage forcing.732

We ask: Is there a concrete relationship between relation rigid linkage forcing733

and the zero forcing numbers of power of graphs?734
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Appendix A. Ordered Multiplicity Lists for Skew-Symmetric Ma-834

trices on Graphs with 5 vertices835

Here, we provide all skew symmetric matrices that realize all possible836

multiplicity lists. With the exception of G29 (the star graph on 5 vertices),837

(1,1,1,1,1) is possible by choosing a near-arbitrary matrix in S´pGq. Hence,838

all cases of p1, 1, 1, 1, 1q are omitted.839

G42, (2,1,2): not possible by Theorem 4.8.840

G44, (1,3,1):841
¨

˚

˚

˚

˚

˝

0 0 ´1 ´1 ´1
0 0 ´1 ´1 ´1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

˛

‹

‹

‹

‹

‚

G44, (2,1,2):842

¨

˚

˚

˚

˚

˚

˝

0 0 1 1 1
0 0 1?

2

?
2 ´

?
2

´1 ´ 1?
2

0 0 0

´1 ´
?

2 0 0 0
´1

?
2 0 0 0

˛

‹

‹

‹

‹

‹

‚
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Graph Skew-Multiplicity lists
G29 (1,3,1) , (1,1,1,1,1)
G30 (1,1,1,1,1)
G31 (1,1,1,1,1)
G34 (1,1,1,1,1)
G35 (1,1,1,1,1)
G36 (1,1,1,1,1)
G37 (1,1,1,1,1)
G38 (1,1,1,1,1)
G40 (1,1,1,1,1)
G41 (1,1,1,1,1)
G42 (1,1,1,1,1)
G43 (1,1,1,1,1)
G44 (1,3,1) , (2,1,2) , (1,1,1,1,1)
G45 (2,1,2) , (1,1,1,1,1)
G46 (1,3,1) , (2,1,2) , (1,1,1,1,1)
G47 (2,1,2) , (1,1,1,1,1)
G48 (2,1,2) , (1,1,1,1,1)
G49 (2,1,2) , (1,1,1,1,1)
G50 (1,3,1) , (2,1,2) , (1,1,1,1,1)
G51 (1,3,1) , (2,1,2) , (1,1,1,1,1)
G52 (1,3,1) , (2,1,2) , (1,1,1,1,1)

Table A.3: Table of all possible skew multiplicity lists for connected graphs on 5 vertices.
Strikethrough lists are not feasible but require auxiliary results to our methods.
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G45: (2,1,2):843

¨

˚

˚

˚

˚

˝

0 1 2 1 0
´1 0 2 ´1 0
´2 ´2 0 1

2
0

´1 1 ´1
2

0 ´3
?

3
2

0 0 0 3
?

3
2

0

˛

‹

‹

‹

‹

‚

G46 (2,1,2): is not possible by Proposition 4.9.844

and G46 (1,3,1):845

¨

˚

˚

˚

˚

˝

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
´1 ´1 ´1 0 1
´1 ´1 ´1 ´1 0

˛

‹

‹

‹

‹

‚

G47 (2,1,2):846

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 1
´1 0 ´1 ´ 1?

3
´ 1?

3

0 1 0 ´1 0
0 1?

3
1 0 ´ 2?

3

´1 1?
3

0 2?
3

0

˛

‹

‹

‹

‹

‹

‚

G47 (2,1,2):847

¨

˚

˚

˚

˚

˝

0 1 0 0 ´
?

2
´1 0 3

2
0 1

2

0 ´3
2

0 1 ´ 1?
2

0 0 ´1 0 1
?

2 ´1
2

1?
2
´1 0

˛

‹

‹

‹

‹

‚

G48 (2,1,2):848
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¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 1 1
0 0 1

2
´2 1

2

´1 ´1
2

0 0 ´

b

5
2

´1 2 0 0 0

´1 ´1
2

b

5
2

0 0

˛

‹

‹

‹

‹

‹

‹

‚

G49 (2,1,2):849

¨

˚

˚

˚

˚

˚

˝

0 0 ´3
?

3
2

1 1
0 0 0 1 ´2

3
?

3
2

0 0 1 ´1
2

´1 ´1 ´1 0 ´
?

3
´1 2 1

2

?
3 0

˛

‹

‹

‹

‹

‹

‚

G50 (2,1,2):850

¨

˚

˚

˚

˚

˝

0 1 0 1 1
´1 0 1 0 1
0 ´1 0 ´1 1
´1 0 1 0 ´1
´1 ´1 ´1 1 0

˛

‹

‹

‹

‹

‚

G50 (1,3,1):851
¨

˚

˚

˚

˚

˝

0 1 0 1 1
´1 0 1 0 1
0 ´1 0 ´1 ´1
´1 0 1 0 1
´1 ´1 1 ´1 0

˛

‹

‹

‹

‹

‚

G51 (2,1,2):852

¨

˚

˚

˚

˚

˝

0 1 0 1 1
´1 0 1 1 ´1
0 ´1 0 ´1

3
´1

3

´1 ´1 1
3

0 4
3

´1 1 1
3
´4

3
0

˛

‹

‹

‹

‹

‚
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and G51 (1,3,1):853

¨

˚

˚

˚

˚

˝

0 0 1 1 ´1
0 0 1 1 ´1
´1 ´1 0 1 1
´1 ´1 ´1 0 2
1 1 ´1 ´2 0

˛

‹

‹

‹

‹

‚

G52 (2,1,2):854

¨

˚

˚

˚

˚

˝

0 a b c 1
´a 0 1 1 1
´b ´1 0 1 1
´c ´1 ´1 0 1
´1 ´1 ´1 ´1 0

˛

‹

‹

‹

‹

‚

where a « ´0.249038 the negative root to x4 ´ 4x ´ 1, b « 1.35219 is855

the positive root to x4`2x2´7, and c « ´1.66325 is the negative root856

to x4 ` 4x´ 1.857

and G52 (1,3,1):858

¨

˚

˚

˚

˚

˝

0 1 1 1
2

´1
´1 0 1 1 1
´1 ´1 0 1

2
2

´1
2
´1 ´1

2
0 3

2

1 ´1 ´2 ´3
2

0

˛

‹

‹

‹

‹

‚
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