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2 The bifurcation lemma for strong properties in

the inverse eigenvalue problem of a graph
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Abstract

The inverse eigenvalue problem of a graph studies the real symmetric
matrices whose off-diagonal pattern is prescribed by the adjacencies of the
graph. The strong spectral property (SSP) is an important tool for this
problem. This note establishes the bifurcation lemma, which states that
if a spectrum can be realized by a matrix with the SSP for some graph,
then all the nearby spectra can also be realized by matrices with the
SSP for the same graph. The idea of the bifurcation lemma also works
for other strong properties and for not necessarily symmetric matrices.
This is used to develop new techniques for verifying a spectrally arbitrary
pattern or inertially arbitrary pattern. The bifurcation lemma provides a
unified theoretical foundation for several known results, such as the stable
northeast lemma and the nilpotent-centralizer method.

Keywords: Inverse eigenvalue problem, strong properties, implicit function
theorem, inverse function theorem, bifurcation lemma, graphs.

AMS subject classifications: 05C50, 15A18, 15B35, 15B57, 58C15.

1 Introduction

Let G be a graph on n vertices. Define S(G) as the set of all n × n real
symmetric matrices whose (i, j)-entry, for i 6= j, is nonzero if and only if {i, j}
is an edge. Note that the diagonal entries can be any real number. The inverse
eigenvalue problem of a graph G (IEP-G) asks what spectra can be realized over
all matrices in S(G)?
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The IEP-G has become a central study for researchers interested in general
aspects of the spectra of graphs or certain branches of combinatorial matrix the-
ory. From the early beginnings of Parter and Weiner (see [16,18]), studying the
behavior of eigenvalue multiplicities in trees and particular induced subgraphs,
with mild extensions to include cycles, this subject has continued to expand,
although a complete resolution seems rather distant. However, over the past
few years, motivated in part by seminal work of Colin de Veredière [8] incor-
porating a particular aspect of genericity (called the strong Arnol’d property),
other similar properties have been developed with significant impact on recent
advances to the IEP-G. These matrix properties, known as the strong spec-
tral and strong multiplicity properties (see [3, 4]), are defined below and have
been used with considerable success on specific aspects of the IEP-G. These
“strong” properties allow one to preserve some spectral information under cer-
tain matrix perturbations, which ability has allowed new sorts of analysis on
the IEP-G by considering forbidden minor characterizations and some extremal
problems involving related parameters including: the minimum rank, maximum
multiplicity, and the minimum number of distinct eigenvalues of a graph. See,
e.g., [3, 4] and the references therein.

A natural question is the following. Let G be a graph on n vertices. Suppose
A ∈ S(G) has spec(A) = Λ. For a sequence Λ′ of n real numbers such that
‖Λ−Λ′‖ (treated as vectors) is small enough, is there a matrix A′ ∈ S(G) such
that spec(A′) = Λ′?

The purpose of this note is to provide a positive answer to the above ques-
tion by proving the so-called bifurcation lemma, utilizing the inverse function
theorem. The organization of the paper is as follows: In Section 2, we develop
a version of the inverse function theorem for the purpose of proving the bifur-
cation lemma. The statement of the bifurcation lemma and its proof will be
given in Section 3, which leads to an immediate consequence known in [1] as the
stable northeast lemma. Applications of the bifurcation lemma on the number
of minimum distinct eigenvalues and on the ordered multiplicity lists of a cycle
will be given in Section 4. Finally, a version of the bifurcation lemma for non-
symmetric matrices is given in Section 5 and, as a consequence, a more flexible
version of the nilpotent-centralizer method [12] is presented and new methods
for finding spectrally arbitrary and inertially arbitrary patterns are developed.

In the remainder of this section, we set up some basic notation of matrices
and review the definition and some propositions of the strong properties. Let

A be a symmetric matrix and spec(A) = {λ
(m1)
1 , . . . , λ

(mq)
q } with λ1 < · · · <

λq. The ordered multiplicity list of A is the sequence m(A) = (m1, . . . ,mq).
The number of distinct eigenvalues of A is denoted as q(A) = q. Let n+(A),
n−(A), and n0(A) be the number of positive, negative, and zero eigenvalues of A,
respectively. Then the partial inertia of A is the pair pin(A) = (n+(A), n−(A)).
When A is an n × n matrix, the partial inertia is enough to determine the
inertia (n+(A), n−(A), n0(A)) since n+(A) + n−(A) + n0(A) = n. Assuming n

if fixed, it follows that the partial inertia is equivalent to the inertia, while the
partial inertia is more convenient for our purposes and is used in the literature,
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e.g., [1, 5]. The matrix norm used in this paper is the Frobenius norm ‖A‖2 =
tr(A⊤A).

1.1 Strong properties

Let Matn(R) be the family of n×n real matrices. Let Bn be the set of matrices
in Matn(R) with ‖A‖ < 0.5, noting that for all L ∈ Bn the matrix I + L is
invertible. Let Symn(R) and Skewn(R) be the families of real symmetric and
real skew-symmetric matrices of order n, respectively. Throughout the paper,
we will view them as vector spaces equipped with the inner product

〈A,B〉 = tr(B⊤A).

Finally, for a given graph G, let Scl(G) be the topological closure of S(G).
That is,

Scl(G) = {A =
[

aij
]

∈ Symn(R) : aij = 0 if ij ∈ E(G)},

which is a subspace of Symn(R).
Let A ∈ Symn(R) be a matrix and q the number of distinct eigenvalues of

A. Then A has the strong spectral property (or the SSP) if X = O is the only
symmetric matrix satisfying

A ◦X = O, I ◦X = O, and [A,X ] = O.

Here [A,X ] = AX−XA. The matrix A has the strong multiplicity property (or
the SMP) if X = O is the only symmetric matrix satisfying

A ◦X = O, I ◦X = O, [A,X ] = O,

and tr(AkX) = 0 for k = 0, . . . , q − 1.

Finally, A has the strong Arnol’d property (or the SAP) if X = O is the only
symmetric matrix satisfying

A ◦X = O, I ◦X = O, and AX = O.

The SAP was used in [7] (English translation [8]) to define the Colin de Verdière
parameter µ(G). The SSP and the SMP were introduced in [4] for the study of
the IEP-G.

Let U and W be vector subspaces of Symn(R). Then U ∩W = {0} if and
only if U⊥ +W⊥ = Symn(R). We will use this fact to produce an equivalent
condition of the strong properties mentioned above.

Suppose A is a matrix in S(G) with q distinct eigenvalues. We may calculate
the orthogonal complements for the following subspaces. Let

U = {X ∈ Symn(R) : A ◦X = O, I ◦X = O}.
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Then U⊥ = Scl(G). Additionally, for

WS = {X ∈ Symn(R) : [A,X ] = O},

WM = {X ∈ Symn(R) : [A,X ] = O and tr(AkX) = 0 for k = 0, . . . , q − 1},

WA = {X ∈ Symn(R) : AX = O},

we have

W⊥

S = {K⊤A+AK : K ∈ Skewn(R)},

W⊥

M = {K⊤A+AK : K ∈ Skewn(R)}+ span{Ak : k = 0, . . . , q − 1},

W⊥

A = {L⊤A+AL : L ∈ Matn(R)}.

The calculation of these orthogonal complements can be found in, e.g., [4, Theo-
rem 27]. (In fact, these are the tangent and normal spaces of certain manifolds,
but in this note we demonstrate the result using elementary language.) Thus,
we have the following proposition.

Proposition 1.1. Let G be a graph and A ∈ S(G) a matrix with q distinct

eigenvalues. Then

(a) The matrix A has the SSP if and only if

Scl(G) + {K⊤A+AK : K ∈ Skewn(R)} = Symn(R).

(b) The matrix A has the SMP if and only if

Scl(G)+{K⊤A+AK : K ∈ Skewn(R)}+span{Ak : k = 0, . . . , q−1} = Symn(R).

(c) The matrix A has the SAP if and only if

Scl(G) + {L⊤A+AL : L ∈ Matn(R)} = Symn(R).

2 Inverse function theorem

In this section, we revisit the classical inverse function theorem and construct a
version that is suitable for our purpose.

Let F (u) be a function from an open subset of a vector space U to another
vector space W . Recall that a function is smooth if it is infinitely differentiable
throughout its domain. Let u0 be a point in the domain F (u0) = w0. Note
that the tangent space around u0 in U and the tangent space around w0 in W

are U and W , respectively. The derivative of F at u0, denoted as Ḟ
∣

∣

∣

u=u0

, is a

linear operator

d 7→ lim
t→0

F (u0 + td)− F (u0)

t
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from the tangent space of U to the tangent space of W that takes a direction
d and outputs the directional derivative. When both U and W are finite-

dimensional, it is easy to check if Ḟ
∣

∣

∣

u=u0

is injective, surjective, or invertible

since it is linear. In particular, when dimU = dimW < ∞, we know one of the
three properties is enough to imply the other two.

Example 2.1. Let U = Skewn(R) and W = Matn(R). Then the function
F (K) = eK from an open subset of U to W has

Ḟ
∣

∣

∣

K=O
= K,

since

lim
t→0

eO+Kt − eO

t
= lim

t→0

1

t

[

(Kt)0

0!
+

(Kt)1

1!
+

(Kt)2

2!
+

(Kt)3

3!
+ · · · − I

]

= lim
t→0

[

K1

1!
+

K2t1

2!
+

K3t2

3!
+ · · ·

]

= K.

Example 2.2. Let U = Bn and W = Matn(R). Let F : U → W be a function
defined by F (L) = (I + L)−1. Then

Ḟ
∣

∣

∣

L=O
= −L

since

lim
t→0

(I + Lt)−1 − I

t
= lim

t→0

1

t

[

I − Lt+ (Lt)2 − (Lt)3 + · · · − I
]

= lim
t→0

[

−L+ L2t− L3t2 + · · ·
]

= −L.

Theorem 2.3 is one of the common statements of the inverse function theo-
rem, which can be found in, e.g., [11, Theorem 1.12].

Theorem 2.3 (Inverse function theorem). Let U and W be finite-dimensional

vector spaces over R with dimU = dimW . Let F be a smooth function from

an open subset of U to W with F (u0) = w0. If Ḟ
∣

∣

∣

u=u0

is invertible, then there

are an open subset W ′ ⊆ W containing w0 and a smooth function T : W ′ → U

such that T (w0) = u0 and F ◦ T is the identity map on W ′.

The condition dimU = dimW is necessary so that the derivative can pos-
sibly be invertible. However, the inverse function theorem still works when
U and W have different dimensions and the derivative is surjective. Here we
state another version of the inverse function theorem and include the proof for
completeness.

Theorem 2.4. Let U and W be finite-dimensional vector spaces over R. Let

F be a smooth function from an open subset of U to W with F (u0) = w0. If

Ḟ
∣

∣

∣

u=u0

is surjective, then there are an open subset W ′ ⊆ W containing w0 and

a smooth function T : W ′ → U such that T (w0) = u0 and F ◦ T is the identity

map on W ′.
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Proof. Let Ḟ = Ḟ
∣

∣

∣

u=u0

. Let U ′ be the orthogonal complement of the kernel

ker(Ḟ ). Since Ḟ is surjective, the restriction of Ḟ on U ′ is an invertible operator.
Let u0 + U ′ be the affine subspace

{u0 + u : u ∈ U ′}.

Let F̃ be the restriction of F on the intersection of U ′ and the domain of F .
Thus, F̃ is a function whose domain and codomain are vector spaces of the same

dimension, and ˙̃
F
∣

∣

∣

u=u0

equals the restriction of Ḟ on U ′, which is invertible.

By Theorem 2.3, there is an open subset W ′ ⊆ W containing w0 and a smooth
function T : W ′ → u0 +U ′ ⊆ U such that T (w0) = u0 and F̃ ◦T is the identity
map on W ′. Since F̃ is a restriction of F , naturally F ◦ T is also the identity
map on W ′.

3 Bifurcation lemma

We establish the so-called bifurcation lemma in this section. Before this verifica-
tion, we observe that Proposition 3.1 demonstrates that each strong property is
equivalent to the derivative of a certain perturbation function being surjective.

Proposition 3.1. Let G be a graph on n vertices and A ∈ S(G) with q distinct

eigenvalues.

(a) For the function F : Scl(G)× Skewn(R) → Symn(R) defined by

F (B,K) = e−K(A+B)eK ,

the derivative Ḟ
∣

∣

∣

B=O
K=O

is surjective if and only if A has the SSP.

(b) For the function F : Scl(G)× Skewn(R)× R
q → Symn(R) defined by

F (B,K, c) = e−Kp(A+B)eK ,

where c = (c0, . . . , cq−1) and p(x) = x+

q−1
∑

k=0

ckx
k,

the derivative Ḟ
∣

∣

∣B=O
K=O
c=0

is surjective if and only if A has the SMP.

(c) For the function F : Scl(G)× Bn → Symn(R) defined by

F (B,L) = (I + L)⊤(A+B)(I + L),

the derivative Ḟ
∣

∣

∣

B=O
L=O

is surjective if and only if A has the SAP.
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Proof. We show that the partial derivatives of each function correspond to the
spaces related to each of the strong properties.

Case (a). Let Ḟ = Ḟ
∣

∣

∣

B=O
K=O

. Let FB = ∂F
∂B

∣

∣

∣

B=O
K=O

and FK = ∂F
∂K

∣

∣

∣

B=O
K=O

be the

corresponding partial derivatives. Thus,

range(Ḟ ) = range(FB) + range(FK)

and Ḟ is surjective if and only if range(FB) + range(FK) = Symn(R). Observe
that range(FB) = Scl(G) and

range(FK) = {K⊤A+AK : K ∈ Skewn(R)}.

Thus, range(FB) + range(FK) = Symn(R) if and only if A has the SSP by
Proposition 1.1.

Case (b). Similarly, let Ḟ = Ḟ
∣

∣

∣B=O
K=O
c=0

and let FB, FK , and Fc be the correspond-

ing partial derivatives at B = O, K = O, and c = 0. By direct computation,
we have range(FB) = Scl(G),

range(FK) = {K⊤A+AK : K ∈ Skewn(R)},

and
range(Kc) = span{Ak : k = 0, . . . , q − 1}.

By Proposition 1.1, Ḟ is surjective if and only if A has the SMP.
Case (c). Following the same workflow and with FB and FL being the corre-
sponding partial derivatives at B = O and L = O, we arrive at the conclusion
by observing range(FB) = Scl(G) and

range(FL) = {L⊤A+AL : L ∈ Matn(R)}.

Note that the functions in Proposition 3.1 are all compositions of perturba-
tions. The function B 7→ A + B is a perturbation of A that does not change
the pattern (when B is small enough). The function K 7→ e−KMeK does not
change the spectrum of M , the function (K, c) 7→ e−Kp(M)eK does not change
the ordered multiplicity list, and the function L 7→ (I +L)⊤M(I +L) preserves
the inertia (and rank) of L.

Theorem 3.2 (Bifurcation lemma). Let G be a graph on n vertices and A ∈
S(G). If A has the

(a) SSP,

(b) SMP, or

(c) SAP,

7



respectively, then there is ǫ > 0 such that for any M ∈ Symn(R) with ‖M−A‖ <

ǫ, a matrix A′ ∈ S(G) exists such that

(a) spec(A′) = spec(M) and A′ has the SSP,

(b) m(A′) = m(M) and A′ has the SMP, or

(c) pin(A′) = pin(M) and A′ has the SAP,

respectively.

Proof. We prove the case for the SSP only, since the other cases are similar.
Let F be the function in Proposition 3.1(a) and Ḟ its derivative at zero. Since
A has the SSP, Ḟ is surjective. By the inverse function theorem (Theorem 2.4),
there are an open subset W ′ ⊆ Symn(R) containing A and a smooth function
T such that T (A) = (O,O) and F ◦T is the identity map on W ′. Thus, for any
M ∈ W ′, we may let (B′,K ′) = T (M). Then

F (B′,K ′) = e−K′

(A +B′)eK
′

= F (T (M)) = M,

which implies A+B′ and M have the same spectrum since eK
′

is an orthogonal
matrix and e−K′

is its inverse. Therefore, when ‖M − A‖ is sufficiently small,
A′ = A + B′ is a matrix in S(G) and spec(A′) = spec(M). Moreover, the
derivative of F at B = B′ andK = K ′ remains surjective when the perturbation
is small enough, so A′ has the SSP as well. The other cases can be obtained by
choosing an appropriate function in Proposition 3.1.

Let A be a real symmetric matrix and suppose QDQ⊤ is its diagonalization
with Q an orthogonal matrix. Since the Frobenius norm is unitarily invariant,

‖QD′Q⊤ −QDQ⊤‖2 = ‖D′ −D‖2.

Thus, M can be chosen as QD′Q⊤ for any D′ with ‖D′ −D‖ < ǫ. By apply-
ing the bifurcation lemma to a matrix M with the nearby spectrum, ordered
multiplicity list, or inertia, the following corollaries are immediate.

Corollary 3.3. Let G be a graph and A ∈ S(G) a matrix with the SSP and

spec(A) = {λ1, . . . , λn}. Then there is ǫ > 0 such that for any µ1, . . . , µn with

|µi − λi| < ǫ for all i = 1, . . . , n, a matrix A′ ∈ S(G) exists with the SSP and

spec(A′) = {µ1, . . . , µn}.

Corollary 3.4. Let G be a graph and A ∈ S(G) a matrix with the SMP and

m(A) = m. Then for any refinement m′ of m, there is a matrix A′ ∈ S(G)
with the SMP and m(A′) = m′.

Corollary 3.5 is known as the stable northeast lemma for graphs, which
was developed in [1, Corollary 2]. It is also an immediate consequence of the
bifurcation lemma.

8



Corollary 3.5. Let G be a graph on n vertices and A ∈ S(G) a matrix with the

SAP such that pin(A) = (a, b) with a+ b < n. Then each of the partial inertia

(a+ 1, b) and (a, b+ 1) can be achieved by a matrix A′ ∈ S(G) with the SAP.

Note that Corollary 3.5 remains true if the assumption of SAP is dropped,
but the resulting matrix A′ is not guaranteed to also have the SAP. See [5,
Lemma 1.1].

Corollary 3.6. Let G be a graph on n vertices and A ∈ S(G) a matrix with

the SAP and rank(A) = r. Then for any r′ with r ≤ r′ ≤ n there is a matrix

A′ ∈ S(G) with the SAP and rank(A′) = r′.

Similar to the comments after Corollary 3.5, the SAP in Corollary 3.6 can
be removed. That is, if A ∈ S(G) has rank r, then for any r′ with r ≤ r′ ≤ n

there is a matrix A′ with rank(A′) = r′. This is well-known by the following
argument: Pick an invertible matrix B ∈ S(G); then since B can be obtained
from A by a sequence of rank-1 perturbations without leaving S(G), the ranks
of matrices on the way from A to B include at least all the integers between r

to n. The matrices resulting from this process are not, however, guaranteed to
have the SAP.

4 Applications

In this section we provide several consequences of the bifurcation lemma.

4.1 Minimum number of distinct eigenvalues

Recall that q(A) is the number of distinct eigenvalues of A. With the bifurcation
lemma, each eigenvalue of high multiplicity can be divided into a pair of eigen-
values each with smaller multiplicity. Therefore, one may increase the number
of distinct eigenvalues by one without changing the pattern of the matrix.

Theorem 4.1. Let G be a graph on n vertices and A ∈ S(G) a matrix with the

SSP or the SMP, respectively. Then for any q′ with q(A) ≤ q′ ≤ n, there is a

matrix A′ ∈ S(G) with the SSP or the SMP, respectively, such that q(A′) = q′.

It remains an open question whether the assumption of the SSP or the SMP
in Theorem 4.1 can be dropped.

4.2 Cycles

Let Cn be the cycle on n vertices. It is known [10] that a set of real numbers
λ1 ≤ · · · ≤ λn is the spectrum of a matrix in S(Cn) if and only if

λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ · · ·

or
λ1 < λ2 ≤ λ3 < λ4 ≤ λ5 < · · · .
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In other words, the ordered multiplicity lists realizable by matrices in S(G)
are the refinements of (2, . . . , 2) or (1, 2, . . . , 2, 1) when n is even and are the
refinements of (2, . . . , 2, 1) or (1, 2, . . . , 2) when n is odd. We will see that these
four maximal ordered multiplicity lists can be achieved with the SMP, so we
have the following theorem.

Theorem 4.2. Every ordered multiplicity list that can be achieved by a matrix

in S(Cn) can be achieved by a matrix in S(Cn) with the SMP.

Proof. The IEP-G has been solved for small graphs up to 5 vertices; see [3] and
the references therein. So we know (2, 1) and (1, 2) can be realized by matrices
in S(C3) with the SSP (so the SMP); we also know (2, 2) and (1, 2, 1) can be
realized by matrices in S(C4) with the SSP (so the SMP).

Let k ≥ 2. By [4, Theorem 48], for any even cycle C2k there is a matrix A ∈
S(C2k) with the SMP and m(A) = (2, . . . , 2). By the decontraction lemma [3,
Lemma 6.12], for any odd cycle C2k+1 there are matrices A′

1 and A′
2 in S(C2k+1)

with the SMP andm(A′
1) = (1, 2, . . . , 2) andm(A′

2) = (2, . . . , 2, 1). By applying
the decontraction lemma again to A′

1 or A′
2, for any even cycle C2k+2, there is

a matrix A′′ ∈ S(C2k+2) with the SMP and m(A) = (1, 2, . . . , 2, 1). Combining
all these results, we know for n ≥ 5, there are matrices with the SMP in S(Cn)
realizing the ordered multiplicity lists (2, . . . , 2) or (1, 2, . . . , 2, 1) if n is even and
the lists (1, 2, . . . , 2) and (2, . . . , 2, 1) if n is odd.

By the bifurcation lemma (Corollary 3.4), the desired result holds.

It is not yet known, however, whether every realizable spectrum of matrices
in S(Cn) can be realized by a matrix in S(Cn) with the SSP.

5 Not necessarily symmetric matrices

The idea of bifurcation also applies to matrices that are not necessarily sym-
metric and has applications to the study of sign patterns. A sign pattern P is
an array whose entries are +, −, or 0, and the qualitative class Q(P ) is the set
of all matrices of the same dimensions as P and the signs of whose entries are
prescribed by P . We say P ′ is a superpattern of P if P ′ can be obtained from
P by replacing some 0’s with +’s or −’s. (Note that P is also a superpattern of
itself.)

The terminology was introduced in [9] that an n× n sign pattern P is said
to be a spectrally arbitrary pattern if for each monic real-coefficient polynomial
p(x) of degree n, there is a matrix A ∈ Q(P ) whose characteristic polynomial
is p(x), or in other words that every set of n complex numbers that is invariant
under conjugation can be realized by a matrix A ∈ Q(P ).

Let P be an n × n sign pattern and A ∈ Q(P ). The nilpotent-centralizer
method [12] states that if

• A is a nilpotent matrix of index n and

• X = O is the only matrix satisfying A ◦X = O and [A,X⊤] = O,
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then any of its superpatterns is a spectrally arbitrary pattern. In the following,
we will build a more flexible version of this theorem and see that it follows the
same flavor of the bifurcation lemma.

Let P =
[

pij
]

be an n × n sign pattern. We define Qv(P ) as the set of

matrices A =
[

aij
]

∈ Matn(R) such that aij = 0 if pij = 0 (and aij can be any
real number if pij is + or −). The set Qv(P ) is a vector space; indeed, it is the
tangent space of Q(P ) at any point.

Definition 5.1. Let A be an n × n matrix. Then A has the non-symmetric

strong spectral property (nSSP) if X = O is the only matrix satisfying A◦X = O

and [A,X⊤] = O.

Remark 5.2. The nSSP seemingly misses one condition I ◦X = O comparing
to the SSP. However, both A ◦ X = I ◦ X = O in the SSP and A ◦ X in
the nSSP can be interpred as “X has to be zero on those potentially nonzero
entries.” From this point of view, the nSSP is a natural analogue of the SSP
for non-symmetric matrices.

Theorem 5.3 (Bifurcation lemma for non-symmetric matrices). Let P be an

n× n sign pattern and A ∈ Q(P ). If A has the nSSP, then there is ǫ > 0 such

that for any M ∈ Matn(R) with ‖M − A‖ < ǫ, a matrix A′ ∈ Q(P ) exists such

that A′ and M are similar and A′ has the nSSP.

Proof. Given a matrix A ∈ Q(P ), consider the function F : Qv(P ) × Bn →
Matn(R) defined by

F (B,L) = (I + L)−1(A+B)(I + L).

Let Ḟ = Ḟ
∣

∣

∣

B=O
L=O

. By direct computation, the range of Ḟ is

Qv(P ) + {−LA+AL : L ∈ Matn(R)}.

Note that in the vector space Matn(R), the orthogonal complement of Qv(P ) is

{X ∈ Matn(R) : A ◦X = O},

and the orthogonal complement of {−LA+AL : L ∈ Matn(R)} is

{X ∈ Matn(R) : [A,X
⊤] = O}

since

0 = 〈−LA+AL,X〉 = tr(X⊤(−LA+AL))

= tr(−X⊤LA+X⊤AL)

= tr(−LAX⊤ + LX⊤A)

= − tr(L(AX⊤ −X⊤A))

= −
〈

AX⊤ −X⊤A,L⊤
〉

,
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for L ∈ Matn(R). Therefore, A has the nSSP if and only if Ḟ is surjective.
By the inverse function theorem (Theorem 2.4), there is ǫ > 0 such that for

any M ∈ Matn(R) with ‖M −A‖ < ǫ, matrices B′ ∈ Qv(P ) and L′ ∈ Matn(R)
exist with

F (B′, L′) = (I + L′)−1(A+B′)(I + L′) = M,

which means A′ = A+B′ is similar to M . When ‖M −A‖ is sufficiently small,
‖B′‖ is small and A′ ∈ Q(P ). Moreover, when the perturbation is sufficiently
small, the derivative of F at B = B′ and L = L′ remains surjective, so A′ has
the nSSP.

The function F used in the bifurcation lemma (Theorem 5.3) is a composition
of M 7→ (I + L)−1M(I + L) and M 7→ M +B. In the following, we will see by
changing the order of the composition, we will get the superpattern lemma. In
short, the bifurcation lemma allows us to find a matrix with the same pattern but
with a slightly different Jordan canonical form, while the superpattern allows us
to find a matrix with the same Jordan canonical form but with a slightly different
pattern. Note that the superpattern lemma is a non-symmetric analogue of the
supergraph lemma [4, Theorem 10].

Theorem 5.4 (Superpattern lemma). Let P be an n × n sign pattern and

A ∈ Q(P ). If A has the nSSP, then for any superpattern P ′ of P , a matrix

A′ ∈ Q(P ′) exists such that A′ and A are similar and A′ has the nSSP.

Proof. Given a matrix A ∈ Q(P ), consider the function F : Qv(P ) × Bn →
Matn(R) defined by

F (B,L) = (I + L)−1A(I + L) +B.

Let Ḟ = Ḟ
∣

∣

∣

B=O
L=O

. By the arguments in the proof of Theorem 5.3, A has the

nSSP if and only if Ḟ is surjective.
By the inverse function theorem (Theorem 2.4), there is ǫ > 0 such that for

any M ∈ Matn(R) with ‖M −A‖ < ǫ, matrices B′ ∈ Qv(P ) and L′ ∈ Matn(R)
with

F (B′, L′) = (I + L′)−1A(I + L′) +B′ = M

exist, which means A′ = M−B′ is similar to A. We may chooseM as the matrix
obtained from A by adding +s or −s at the extra nonzero entries in P ′ but not
in P . The quantity s can be chosen sufficiently small so that ‖M − A‖ < ǫ.
Since B′ is a small perturbation on the nonzero entries of A, A′ = M −B′ is a
matrix in Q(P ′). When the perturbation is sufficiently small, the derivative of
F at B = B′ and L = L′ remains surjective, so A′ has the nSSP.

With the bifurcation lemma and the superpattern lemma, we are ready to
prove Corollary 5.7, a more flexible version of the nilpotent-centralizer method.
Note that in Corollary 5.7, the nilpotent matrix is no longer required to have in-
dex n. Instead, all that is required is that the spectra within some neighborhood
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of a nilpotent matrix include all sufficiently small spectra that are invariant un-
der conjugation. The following known result will allow us to show that every
nilpotent matrix meets this requirement.

Theorem 5.5. [13, Theorem 2.3.4] If A ∈ Matn(R), there is an orthogonal

matrix Q ∈ Matn(R) such that

Q⊤AQ =











A1

A2
∗

. . .
O

Ak











∈ Matn(R),

where 1 ≤ k ≤ n and each Ai is a real 1× 1 matrix, or a real 2× 2 matrix with

a non-real pair of complex conjugate eigenvalues. The diagonal blocks Ai may

be arranged in any prescribed order.

Corollary 5.6. Let A ∈ Matn(R) be nilpotent and let ǫ > 0 be given. Then for

any complex multiset Λ = {λ1, . . . , λn}, invariant under conjugation, with

n
∑

i=1

|λi|
2 < ǫ2,

a matrix M exists with ‖M −A‖ < ǫ and spec(M) = Λ.

Proof. Since ‖M − A‖ = ‖Q⊤MQ − Q⊤AQ‖ for any orthogonal matrix Q, by
Theorem 5.5 we may assume without loss of generality that A is strictly upper
triangular, with all diagonal entries equal to 0. For each real eigenvalue λi the
perturbation of a 1 × 1 diagonal block from [0] in A to [λi] in M contributes
exactly |λi|

2 to ‖M − A‖2. For each non-real conjugate pair {λi, λj} whose
real part is a, and the absolute value of whose imaginary part is b > 0, the
perturbation of some 2× 2 diagonal block

from

[

0 x

0 0

]

in A



























































to

[

a −b

b a

]

in M, −b ≤ x < 0

to

[

a b

−b a

]

in M, 0 ≤ x ≤ b

to

[

a x
−b2

x
a

]

in M, |x| > b

contributes no more than |λi|
2 + |λj |

2 = 2a2 + 2b2 to ‖M − A‖2 in every case,
regardless of the value of x. It follows that ‖M − A‖2 ≤ ǫ2 holds, and thus
‖M −A‖ < ǫ, for the perturbed matrix M with spectrum Λ.

Corollary 5.7. Let P be an n×n sign pattern and A ∈ Q(P ). If A is nilpotent

and has the nSSP, then any superpattern of P is a spectrally arbitrary pattern.
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Proof. By the bifurcation lemma for non-symmetric matrices (Theorem 5.3),
there is ǫ > 0 such that for any M with ‖M − A‖ < ǫ, a matrix A′ ∈ Q(P )
exists such that A′ and M are similar and A′ has the nSSP.

By Corollary 5.6, for any set of complex numbers Λ = {λ1, . . . , λn}, invariant
under conjugation, with

n
∑

i=1

|λi|
2 < ǫ2,

a matrix M exists with ‖M −A‖ < ǫ and spec(M) = Λ.
Combining the above results, P allows any sufficiently small spectrum that is

invariant under conjugation. By scaling A′ to kA′, P allows any spectrum that
is invariant under conjugation. Moreover, by the superpattern lemma (Theo-
rem 5.4), any superpattern of P is also a spectrally arbitrary pattern since P is a
spectrally arbitrary pattern and the matrices A, A′, and kA′ have the nSSP.

This leads to a theorem developed by Pereira [17]. Recall that a sign pattern
is full if each of its entries is nonzero. Also, every matrix in the qualitative class
of a full sign pattern naturally has the nSSP by definition.

Corollary 5.8. [17, Theorem 1.2] If P is a full n× n sign pattern and Q(P )
contains a nilpotent matrix, then P is a spectrally arbitrary pattern.

Remark 5.9. Comparing to the nilpotent-centralizer method, Corollary 5.7
provides a more flexible condition for finding a spectrally arbitrary pattern since
the nilpotent matrix A is not necessarily of index n. However, as we can see
later in Corollary 5.11, a sign pattern P can be verified as a spectrally arbitrary
pattern by the nilpotent-centralizer method if and only if P can be verified as
a spectrally arbitrary pattern by Corollary 5.7.

Theorem 5.10. [13, Theorem 3.1.11] Let A ∈ Matn(R) be a matrix with only

real eigenvalues. Then there is a nonsingular matrix Q ∈ Matn(R) such that

A = QJQ−1, where J is the Jordan canonical form of A.

Corollary 5.11. Let P be a sign pattern. If there is a nilpotent matrix A ∈
Q(P ) with the nSSP, then there is a nilpotent matrix A′ ∈ Q(P ) of index n and

with the nSSP.

Proof. According to Theorem 5.10, every n×n nilpotent matrix has a nilpotent
matrix of index n that is arbitrarily close to it. Thus, the desired result follows
from the bifurcation lemma for non-symmetric matrices (Theorem 5.3).

The nilpotent-Jacobian method introduced in [9] is another method for ver-
ifying a spectrally arbitrary pattern, and it was developed earlier than the
nilpotent-centralizer method. Roughly speaking, the nilpotent-Jacobian method
considers a map f from n nonzero entries on an n×n nilpotent matrix A ∈ Q(P )
to the n non-leading coefficients of the characteristic polynomial det(xI − A),
and it states that if the derivative of f is surjective (equivalently, invertible)
then any superpattern of P is spectrally arbitrary. On the one hand, for the
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nilpotent-centralizer method, it was shown that if A is a nilpotent matrix of
index n and A has the nSSP, then the map f with the desired properties for the
nilpotent-Jacobian method exists [12]. On the other hand, in [6], it was shown
that such a map f exists only when the nilpotent matrix A has index n. In
summary, when A is a nilpotent matrix, the map f for the nilpotent-Jacobian
method exists if and only if A is of index n and A has the nSSP. From this point
of view, the nilpotent-Jacobian method and the nilpotent-centralizer method
are somehow equivalent, while the later one avoid the hassle of finding the ap-
propriate n entries. Example 5.12 provides some reasoning of why the previous
two methods require the nilpotency of index n while Corollary 5.7 only needs
the nilpotency.

Example 5.12. Let

A =





−1 1 −1
−2 2 −2
−1 1 −1



 and B =





x11 x12 x13

x21 x22 x23

x31 x32 x33



 .

Then A is a nilpotent matrix of index 2, which is smaller than the size of A. Let
det(xI − (A+B)) = c0 + c1x+ c2x

2 + x3 such that c0, c1, c2 are polynomials in
variables in B. Let f be the map B 7→ (c0, c1, c2). In particular,

c0 = det(−(A+B)) = (−1)3 det(A+B).

Notice that at B = O, no single variable in B is able to change the value of
det(A+B) since rank(A) = 1 and all 2× 2 submatrices are singular. Therefore,
the derivative of c0 at B = O with respect to any xij is 0, and the derivative
of f is not surjective. Consequently, the nilpotent-Jacobian method and the
nilpotent-centralizer method do not apply in this case.

In contrast, the variables in B naturally perturb A into any matrices nearby
A, so Corollary 5.7 still applies.

The bifurcation lemma also has application to the possible inertia sets of
a sign pattern. Let A be an n × n matrix. The inertia of a not necessarily
symmetric A is

in(A) = (n+(A), n−(A), n0(A)),

where n+(A), n−(A), and n0(A) are the number of eigenvalues with positive,
negative, and zero real part. The refined inertia was considered in [14] and is
defined as

rin(A) = (n+(A), n−(A), nz(A), 2np(A)),

where n+(A) and n−(A) are the defined as those in the inertia while nz(A) and
2np(A) are the number of zero eigenvalues and the number of nonzero pure-
imaginary eigenvalues, respectively. Also, an n × n sign pattern is called an
inertially arbitrary pattern if it can realize all possible inertia (n+, n−, n0) with
n+ + n− + n0 = n.

Corollary 5.13. Let P be an n× n sign pattern and A ∈ Q(P ). If n0(A) = n,

nz(A) ≥ 2, and A has the nSSP, then P is an inertially arbitrary pattern.
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Proof. According to the bifurcation lemma for non-symmetric matrices (Theo-
rem 5.3), a zero eigenvalue can be perturbed into any nearby real eigenvalue,
while a conjugate pair of nonzero pure-imaginary eigenvalues can be perturbed
into two eigenvalues whose real parts are of the same sign.

Suppose (p, q, n−p− q) is the target inertia. If 2np(A) ≥ p, then we perturb
⌊

p
2

⌋

conjugate pairs of nonzero pure-imaginary eigenvalues to have positive real
parts, and, if in addition p is odd, perturb a zero eigenvalue be a positive eigen-
value. If not, we perturb all np(A) conjugate pairs of nonzero pure-imaginary
eigenvalues to have positive real parts, and perturb p− 2np(A) zero eigenvalues
to be positive. After doing similar perturbations to make q eigenvalues with
negative real parts, we see that P is an inertially arbitrary pattern.

6 Concluding remarks

The idea of the bifurcation lemma was motivated by some of the work in [2],
and the same condition as the nSSP is mentioned in [2] for the study of versal
deformation and in [15] for extreme nonnegative matrices. In most of recent
studies of the strong properties, e.g., [3,4], the implicit function theorem is used
for building a new symmetric matrix with additional nonzero entries. The tech-
nique that we have here employed to prove the bifurcation lemma is to use the
inverse function theorem instead, without creating more nonzero entries. As we
have seen, the notion of bifurcation works well with various strong properties
and applies for both the symmetric and the non-symmetric cases. It is foresee-
able that this technique can be used in other circumstances, such as new strong
properties, matrices with zero diagonal, and so on.
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