Inverse eigenvalue problem of a graph

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

March 27, 2023 Algebraic Graph Theory Seminar, virtual

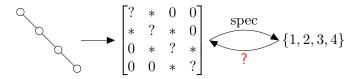
Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph N

→

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$



IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Inverse eigenvalue problem of a graph

March 27, 2023

Inverse eigenvalue problem of a graph (IEP-G)

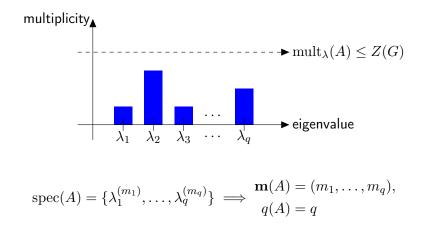
Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

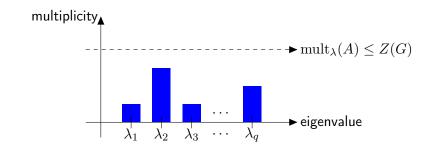
$$\left[\begin{array}{c} ? & * & 0 & 0 \\ * & ? & * & 0 \\ 0 & * & ? & * \\ 0 & 0 & * & ? \end{array} \right] \xrightarrow{\text{spec}} \{1, 2, 3, 4\}$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

(本部) (* 문) (* 문) (* 문)



Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023



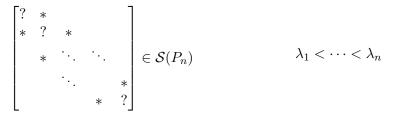
Questions

What are possible $\mathbf{m}(A)$ and what are

$$M(G) = \max\{ \operatorname{mult}_{\lambda}(A) : A \in \mathcal{S}(G), \lambda \in \operatorname{spec}(A) \},\$$
$$q(G) = \min\{q(A) : A \in \mathcal{S}(G) \}?$$

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023

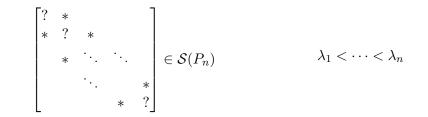
< 回 > < 回 > < 回 >



• {Rows $2 \sim n$ } and {Rows $1 \sim n - 1$ } are always independent. • $\operatorname{mult}(\lambda) = \operatorname{null}(A - \lambda I) \leq 1$ for any $A \in \mathcal{S}(P_n)$ and $\lambda \in \mathbb{R}$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023

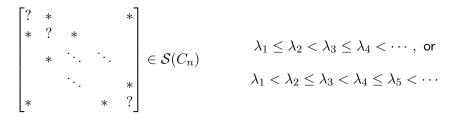
- ロ ト - 4 同 ト - 4 回 ト - - 三日



Theorem (Gray and Wilson 1976; and Hald 1976)

For any set $\Lambda = \{\lambda_1, \dots, \lambda_n\}$ of n distinct real numbers, there is a matrix $A \in S(P_n)$ such that $\operatorname{spec}(A) = \Lambda$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023



For example, (2, 1, 2) is not possible for C_5 .

• {Rows $2 \sim n-1$ } is always independent. • $\operatorname{mult}(\lambda) = \operatorname{null}(A - \lambda I) \leq 2$ for any $A \in \mathcal{S}(C_n)$ and $\lambda \in \mathbb{R}$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph N

・ ロ ト ・ 何 ト ・ ヨ ト ・ 日 ト - - -

$\mathsf{IEP-}C_n$

$$\begin{bmatrix} ? & * & & * \\ * & ? & * & \\ & * & \ddots & \\ & & \ddots & & \\ * & & & * & ? \end{bmatrix} \in \mathcal{S}(C_n) \qquad \qquad \lambda_1 \le \lambda_2 < \lambda_3 \le \lambda_4 < \cdots, \text{ or } \\ \lambda_1 < \lambda_2 \le \lambda_3 < \lambda_4 \le \lambda_5 < \cdots$$

For example, (2, 1, 2) is not possible for C_5 .

Theorem (Ferguson 1980)

For any set $\Lambda = \{\lambda_1, \ldots, \lambda_n\}$ of n real numbers satisfying one of the conditions above, there is a matrix $A \in \mathcal{S}(C_n)$ such that $\operatorname{spec}(A) = \Lambda$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023 5/27

イロト 不得下 イヨト イヨト 二日

Signature similarity

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & -4 & 0 \\ 0 & -4 & 5 & -6 \\ 0 & 0 & -6 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Definition

A signature matrix is a matrix whose diagonal entries are 1 or -1. Two matrices A and B are signature similar if B = DAD for some signature matrix.

Observation

Every matrix $A \in S(P_n)$ is signature similar to a matrix $A' \in S(P_n)$ whose off-diagonal entries are nonnegative.

What do we know about the eigenvectors?

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 4 & 0 \\ 0 & 4 & 5 & 6 \\ 0 & 0 & 6 & 7 \end{bmatrix} = QDQ^{\top} \text{ with } Q = \begin{bmatrix} 0.33 & 0.86 & 0.38 & 0.05 \\ -0.58 & -0.13 & 0.75 & 0.28 \\ 0.63 & -0.36 & 0.17 & 0.67 \\ -0.4 & 0.34 & -0.5 & 0.69 \end{bmatrix}$$

Theorem (Ferguson 1980)

Let $A \in S(P_n)$ with nonnegative off-diagonal entries. Suppose $\lambda_1 < \cdots < \lambda_n$ are the eigenvalues of A and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ the corresponding orthonormal eigenbasis. Then $(\mathbf{v}_i)_1(\mathbf{v}_i)_n$ is sign alternating for $i = 1, \ldots, n$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Adjugate

Let A be an $n \times n$ matrix.

- A(i, j) is the submatrix of A by removing the i-th row and the j-th column.
- The *i*, *j*-cofactor of *A* is

$$c_{i,j}(A) = (-1)^{i+j} \det(A(i,j)).$$

- The adjugate of A is $A^{\mathrm{adj}} = [c_{i,j}]^{\top}$.
- It is known that $AA^{\mathrm{adj}} = A^{\mathrm{adj}}A = \det(A)I$, so

$$A^{\mathrm{adj}} = \begin{cases} \det(A)A^{-1} & \text{ if } \operatorname{rank}(A) = n, \\ O & \text{ if } \operatorname{rank}(A) \le n-2. \end{cases}$$

Jephian C.-H. Lin (NSYSU)

March 27, 2023

くぼう くほう くほう

Eigenvector-eigenvalue identity

Theorem (Eigenvector-eigenvalue identity)

Let A be an $n \times n$ real symmetric matrix. Suppose $\lambda_1 \leq \cdots \leq \lambda_n$ are the eigenvalues of A and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ the corresponding orthonormal eigenbasis. If $\operatorname{mult}(\lambda_i) = 1$, then

$$(A - \lambda_i I)^{\mathrm{adj}} = \left(\prod_{j \neq i} (\lambda_j - \lambda_i)\right) \mathbf{v}_i \mathbf{v}_i^{\top}.$$

Corollary

When $A \in \mathcal{S}(P_n)$ is a matrix with nonnegative off-diagonal entries,

$$\operatorname{sgn}((\mathbf{v}_i)_1(\mathbf{v}_i)_n) = (-1)^{1+n} \operatorname{det}((A - \lambda_i)(n, 1)) \prod_{j \neq i} (\lambda_j - \lambda_i).$$

イロト 不得 トイヨト イヨト

3

Spectrum of $A \in \mathcal{S}(C_n)$

Theorem (Ferguson 1980)

Let $A \in S(C_n)$ with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. If $\lambda_i = \lambda_{i+1}$ and $\lambda_j = \lambda_{j+1}$ for some i < j, then j - i is even.

Sketch of the proof

By signature similarity, we may assume

$$A = \begin{bmatrix} A(n) & \mathbf{b} \\ \mathbf{b}^{\top} & c \end{bmatrix} \text{ with } \mathbf{b} = \begin{bmatrix} x \\ \mathbf{0} \\ y \end{bmatrix}$$

such that $A(n) \in S(P_{n-1})$ with nonnegative off-diagonal entries and eigenvalues $\mu_1 < \cdots < \mu_{n-1}$. (Let $\{\mathbf{v}_1, \dots, \mathbf{v}_{n-1}\}$ be the corresponding orthonormal eigenbasis of A(n).)

March 27, 2023

10/27

Spectrum of $A \in \mathcal{S}(C_n)$

Theorem (Ferguson 1980)

Let $A \in S(C_n)$ with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. If $\lambda_i = \lambda_{i+1}$ and $\lambda_j = \lambda_{j+1}$ for some i < j, then j - i is even.

Sketch of the proof

By the Cauchy interlacing theorem,

$$\lambda_i \le \mu_i \le \lambda_{i+1} = \lambda_i$$

implies $\lambda_i = \mu_i = \lambda_{i+1}$ and similarly $\lambda_j = \mu_j = \lambda_{j+1}$.

10/27

Spectrum of $A \in \mathcal{S}(C_n)$

Theorem (Ferguson 1980)

Let $A \in S(C_n)$ with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. If $\lambda_i = \lambda_{i+1}$ and $\lambda_j = \lambda_{j+1}$ for some i < j, then j - i is even.

Sketch of the proof

$$A = \begin{bmatrix} A(n) & \mathbf{b} \\ \mathbf{b}^{\top} & c \end{bmatrix}$$
 with $\mathbf{b} = \begin{bmatrix} x \\ \mathbf{0} \\ y \end{bmatrix}$

- Since $\operatorname{mult}_A(\lambda_i) = 2$ and $\operatorname{mult}_{A(n)}(\lambda_i) = 1$, $\mathbf{b} \in \operatorname{Col}(A(n) \mu_i I)$.
- $\mathbf{b} \perp \mathbf{v}_i \implies \operatorname{sgn}(xy) = -\operatorname{sgn}((\mathbf{v}_i)_1)(\mathbf{v}_i)_{n-1})$ (same for j)
- Since sgn(xy) is fixed and $sgn((\mathbf{v}_j)_1)(\mathbf{v}_j)_{n-1})$ is sign alternating, j-i is even.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

For the IEP-G, we need . . .

- Combinatorial tools: zero forcing, unique shortest path, variants of zero forcing . . .
- Theory of symmetric matrices: Cauchy interlacing theorem, eigenvector-eigenvalue identity, Rayleigh quotient, Parter–Wiener theorem, Godsil's lemma, ...
- Analytic tools: implicit function theorem, inverse function theorem,

An introductory article

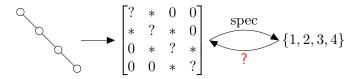
S. M. Fallat, L. Hogben, J. C.-H. Lin, and B. Shader. The inverse eigenvalue problem of a graph, zero forcing, and related parameters. *Notices Amer. Math. Soc., 67:257–261*, February, 2020.

< 回 > < 三 > < 三 >

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$



IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Inverse eigenvalue problem of a graph

March 27, 2023

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

$$\left[\begin{array}{c} ? & * & 0 & 0 \\ * & ? & * & 0 \\ 0 & * & ? & * \\ 0 & 0 & * & ? \end{array} \right] \xrightarrow{\text{spec}} \{1, 2, 3, 4\}$$

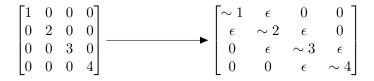
IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Supergraph lemma

Lemma (BFHHLS 2017)

Let G and H' be two graphs with V(G) = V(H') and $E(G) \subseteq E(H')$. If $A \in S(G)$ has the SSP, then there is a matrix $A' \in S(H')$ such that

- $\operatorname{spec}(A') = \operatorname{spec}(A)$,
- A' has the SSP, and



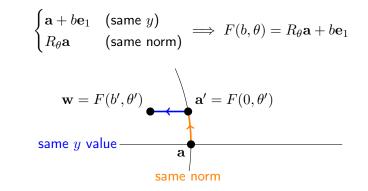
SSP will be defined later

March 27, 2023

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Inverse function theorem in \mathbb{R}^2

Fix a point $\mathbf{a} \in \mathbb{R}^2$. Combine two perturbations:



 $\frac{dF}{db \theta}$ invertible \implies any nearby w can be written as $\mathbf{w} = F(b', \theta')$

For whatever y value nearby, there is \mathbf{a}' with $\|\mathbf{a}'\| = \|\mathbf{a}\|$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph

Theorem (Inverse function theorem)

Let $F: U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is invertible, then F is locally invertible around \mathbf{u}_0 .

Theorem (FHLS 2022)

Let $F: U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is surjective, then F is locally surjective around \mathbf{u}_0 .

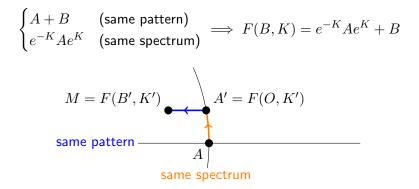
Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023

・ 何 ト ・ ヨ ト ・ ヨ ト …

15 / 27

Inverse function theorem in $\operatorname{Sym}_n(\mathbb{R})$

Fix a point $A \in \mathcal{S}(G)$. Combine two perturbations:



 \dot{F} surjective \implies any nearby M can be written as M = F(B', K')

For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$. Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023 16/27

Pattern perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

Define $\mathcal{S}^{cl}(G)$ as the topological closure of $\mathcal{S}(G)$:

$$\mathcal{S}^{\mathrm{cl}}(G) = \{ A = \left[a_{i,j} \right] \in \mathrm{Sym}_n(\mathbb{R}) : a_{i,j} = 0 \iff \{i,j\} \in E(\overline{G}) \}.$$

Let $A \in \mathcal{S}(G)$. Then $A + B \in \mathcal{S}(G)$ when ||B|| is small enough.

The tangent space of F(B, K) at (O, O) with respect to B is $\mathcal{S}^{cl}(G)$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023 17 / 27

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Isospectral perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

The function e^{K} is a bijection between

{skew-symmetric matrices nearby O} \rightarrow {orthogonal matrices nearby I} for real matrices.

The tangent space of F(B,Q) at (O,O) with respect to Q is $\{-KA + AK : K \in \operatorname{Skew}_n(\mathbb{R})\}.$

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023 18 / 27

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition

Let A be a real symmetric matrix. Then A has the strong spectral property (SSP) if X = O is the only real symmetric matrix that satisfies

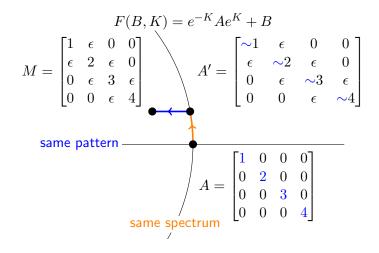
$$A \circ X = I \circ X = [A, X] = O.$$

Let $F(B, K) = e^{-K}Ae^{K} + B$. Then the following are equivalent:

- A has the SSP.
- $\mathfrak{S}^{\mathrm{cl}}(G) + \{-KA + AK : K \in \mathrm{Skew}_n(\mathbb{R})\} = \mathrm{Sym}_n(\mathbb{R}).$
- **③** The derivative \dot{F} is surjective.

マロト イヨト イヨト 二日

Illustration of the supergraph lemma



For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

Jephian C.-H. Lin (NSYSU)

Inverse eigenvalue problem of a graph

Marcl

March 27, 2023

20 / 27

They must be true, right?

Let $A \in \mathcal{S}(G)$ with the SSP. People *believed* that ...

- For any set of real numbers Λ' nearby spec(A), there is a matrix $A' \in \mathcal{S}(G)$ with spec(A') = Λ' .
- For any refinement \mathbf{m}' of $\mathbf{m}(A)$, there is a matrix $A' \in \mathcal{S}(G)$ with $\mathbf{m}(A') = \mathbf{m}'$.
- For any k > q(A), there is a matrix $A' \in \mathcal{S}(G)$ with q(A') = k.

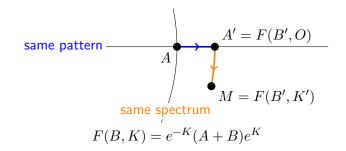
Let $A \in \mathcal{Q}(P)$ be a nilpotent matrix with the nSSP. People *knew* that ...

 For any set of complex numbers Λ' (invariant under conjugation) nearby {0,...,0}, there is a matrix A' ∈ Q(P) with spec(A') = Λ'.

nSSP = the condition of the nilpotent-centralizer method

Theorem (FHLS 2022)

Let $A \in \mathcal{S}(G)$ with the SSP. Then for any set of real numbers Λ' nearby $\operatorname{spec}(A)$, there is a matrix A' with $\operatorname{spec}(A') = \Lambda'$.



Jephian C.-H. Lin (NSYSU)

Inverse eigenvalue problem of a graph

March 27, 2023

The nSSP

Definition

Let A be a real matrix. Then A has the non-symmetric strong spectral property (nSSP) if X = O is the only real matrix that satisfies

$$A \circ X = [A, X^{\top}] = O.$$

Let $Q^{v}(P)$ be the set of matrices with the same zero entries as P. Let $F(B,Q) = Q^{-1}(A+B)Q$, where $B \in Q^{v}(P)$. Then the following are equivalent:

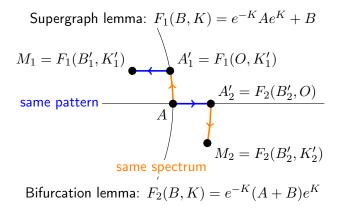
- A has the nSSP.
- **③** The derivative \dot{F} is surjective.

◆ロ → ◆ □ → ◆ 三 → ◆ □ → ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Theorem (FHLS 2022)

Let $A \in \mathcal{Q}(P)$ with the nSSP for some sign pattern P. Then for any set of complex numbers Λ' (invariant under conjugation) nearby $\operatorname{spec}(A)$, there is a matrix $A' \in \mathcal{Q}(P)$ with $\operatorname{spec}(A') = \Lambda'$.

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph March 27, 2023 24/27

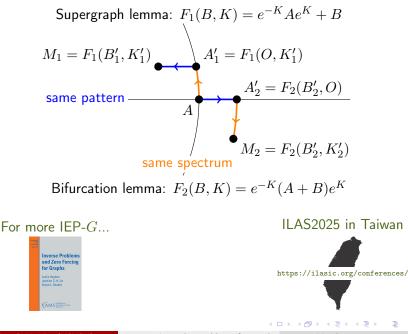


Jephian C.-H. Lin (NSYSU) Inverse eigenvalue

Inverse eigenvalue problem of a graph

March 27, 2023

<20 ≥ 3

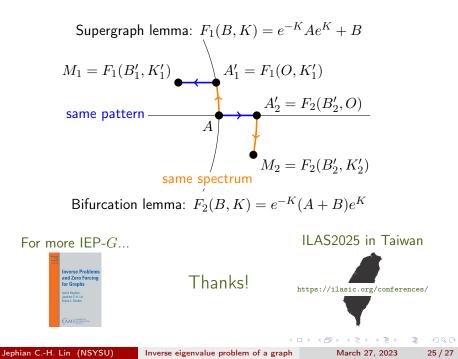


Jephian C.-H. Lin (NSYSU)

Inverse eigenvalue problem of a graph

March 27, 2023

25 / 27



References I

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.

Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph.

Electron. J. Combin., 24:#P2.40, 2017.

S. M. Fallat, L. Hogben, J. C.-H. Lin, and B. Shader. The inverse eigenvalue problem of a graph, zero forcing, and related parameters.

Notices Amer. Math. Soc., 67:257–261, February, 2020.

W. E. Ferguson, Jr.

The construction of Jacobi and periodic Jacobi matrices with prescribed spectra.

Math. Comp., 35:1203-1220, 1980.

く 伊 ト く ヨ ト く ヨ ト 一

L. J. Gray and D. G. Wilson.

Construction of a Jacobi matrix from spectral data. *Linear Algebra Appl.*, 14:131–134, 1976.

O. H. Hald.

Inverse eigenvalue problems for Jacobi matrices. *Linear Algebra Appl.*, 14:63–85, 1976.

```
L. Hogben, J. C.-H. Lin, and B. Shader.
Inverse Problems and Zero Forcing for Graphs.
American Mathematical Society, Providence, 2022.
```

Jephian C.-H. Lin (NSYSU) Inverse eigenvalue problem of a graph M

• • = • • = •