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0 0 0 % 7

@ For a real symmetric matrix of the pattern above, what is the
smallest possible rank?
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@ For a real symmetric matrix of the pattern above, what is the
smallest possible rank?

@ 3 is possible.
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7« 0 0O
* 7 % + 0
0 = 7 % 0
0 * % 7?7 %
0 0 * 7

@ For a real symmetric matrix of the pattern above, what is the
smallest possible rank?

@ 3 is possible.

@ rank > 3.
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Minimum Rank (for simple graphs)

1 2 3 45
1 7« 0 0O
2 * 7 % % 0 ! 0
O e o 2 4
4 0 * % 7 % diagonal terms = free
5 000 » ? M 3

S(G) = {Ae Myn(R): A= A", A satisfies (1)}.

@ The minimum rank of a simple graph G is

mr(G) = min{rank(A): Ae S(G)}.
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Minimum Rank (for simple graphs)

1 2 3 45
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4 0 * % 7 % diagonal terms = free
5 \ooo0 x 7 W 3

S(G) = {Ae Myn(R): A= A", A satisfies (1)}.

@ The minimum rank of a simple graph G is
mr(G) = min{rank(A): Ae S(G)}.

@ The minimum rank problem of a graph G is to determine the
value mr(G).
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Maximum Nullity (for simple graphs)

@ The maximum nullity of a graph G is

M(G) = max{null(A): AeS(G)}.
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Maximum Nullity (for simple graphs)

@ The maximum nullity of a graph G is

M(G) = max{null(A): AeS(G)}.

mr(G) + M(G) = |V(G)|.
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Maximum Nullity (for simple graphs)

@ The maximum nullity of a graph G is

M(G) = max{null(A): AeS(G)}.

mr(G) + M(G) = |V(G)|.
e Finding mr(G) = Finding M(G).
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Maximum Nullity (for simple graphs)

The maximum nullity of a graph G is

M(G) = max{null(A): AeS(G)}.

mr(G) + M(G) =|V(G)|.
Finding mr(G) = Finding M(G).

Finding lower bounds of mr(G) 2 Finding upper bounds of
M(G).
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Zero Forcing Number (for simple graphs)

@ The zero forcing process on a graph G is the color-change
process using the following rules:
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Zero Forcing Number (for simple graphs)

@ The zero forcing process on a graph G is the color-change
process using the following rules:

e some vertices B € V/(G) are set blue initially, while others
remain white;
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Zero Forcing Number (for simple graphs)

@ The zero forcing process on a graph G is the color-change
process using the following rules:

e some vertices B € V/(G) are set blue initially, while others
remain white;

o If x is blue and has exactly one white neighbor y, change the
color of y to blue at next step.
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forcing set.
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Zero Forcing Number (for simple graphs)

@ The zero forcing process on a graph G is the color-change
process using the following rules:

e some vertices B € V/(G) are set blue initially, while others
remain white;
o If x is blue and has exactly one white neighbor y, change the
color of y to blue at next step.
e If B< V(G) can force all vertices to blue, B is called a zero
forcing set.

@ The zero forcing number Z(G) of a graph G is the minimum
cardinality of a zero forcing set.
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Zero Forcing Number (for simple graphs)

@ The zero forcing process on a graph G is the color-change
process using the following rules:

e some vertices B ¢ V(G) are set blue initially, while others
remain white;

e If x is blue and has exactly one white neighbor y, change the
color of y to blue at next step.

e If B< V(G) can force all vertices to blue, B is called a zero
forcing set.

@ The zero forcing number Z(G) of a graph G is the minimum
cardinality of a zero forcing set.

Theorem (AIM, 08)
For all graph G, M(G) < Z(G).
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Example for M(G) and Z(G)

12345
1 (11000 . .
2 |1 2110
3 J]o1110 ) A
4 lo1121
5 \000 11

3

e mr(G)=3,and M(G)=5-3=2.
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Example for M(G) and Z(G)

12345
1 (11000 . .
2 |1 2110
3 J]o1110 ) A
4 lo1121
5 \000 11

3

e mr(G)=3,and M(G)=5-3=2.
e B ={1,5} is a zero forcing set.
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Example for M(G) and Z(G)

12345
1 (11000 . .
2 |1 2110
3 J]o1110 ) A
4 lo1121
5 \000 11

3

e mr(G)=3,and M(G)=5-3=2.
e B ={1,5} is a zero forcing set.
0 2=M(G)<Z(G)=2.
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Example for M(G) and Z(G)

12345
1 (11000 . 5
2 |1 2110
3 J]o1110 ) A
4 lo1121
5 \000 11

3

mr(G) =3, and M(G)=5-3=2.

B ={1,5} is a zero forcing set.

2=M(G)<Z(G)=2.

M(G) =Z(G) when G is a tree [AIM, 08], or |V(G)|<7
[DeLoss et. al. 10].
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@ Find a minimum zero forcing set.
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Sketch of the proof of M(G) < Z(G)

@ Find a minimum zero forcing set.
@ Write down all forces x; — y; in order.

123456789 10

1 7?7+ 000O0O0O0O0TO

2 + 70 » 00 0 0 0 =

3 007? = 0O0O0UO0TUO0O

4 0 = = 727 0 = 0 0 00O

5 00007 00U00

6 000 = = ?2 0 % 00

7 000O0O0O0T7? 00

8 00000 % % ?2 0 = f%g 6130%89
9 000O0O0OTU 0O ? = Z:Q 8;
10 0 x 00000 * % 7 5 10
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Sketch of the proof of M(G) < Z(G)

@ Find a minimum zero forcing set.
@ Write down all forces x; — y; in order.

@ Make x; be the i-th ; y; be the i-th
INEA2EIoNe 1 7 9

4 * 07 = = 00 0 00O

6 0 = = 0?7 0 = 0 00O

2 0 0  ?2 0 « 0 = 0O

10 000 07?7 % 00 »

8 0 000 = x ?2 0 = O

9 00000000 ?

7 000O0O0O0SO07?0

1 000 0007?00 34 638

3 270+ 0000000 50 llowl

5 0727000000 0 . ST

: 2—10
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size of a triangle.

~

@ Number of forces

354 2 6 10 8 1 7 9
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Sketch of the proof of M(G) < Z(G)

@ Number of forces ¥ size of a triangle.

@ Finding minimum zero forcing set 2 Finding largest triangle.

3542 6 10 8 1 7 9
4 * 07 = = 00 0 0O
6 0 = = 0?2 0 = 000
2 0 0 72 0 = 0 % 00
10 0 00 = 0 7?7 % 0 0 =
38 0 000 % 7 0 % 0
9 0 0000 %= 0 O0O0 7
7 0 00 00O 07?0
1 000 = 0O0O0T7?O0O
3 7?0+« 00O0O0O0O0OTO
5 0 ? 00 = 0O0O0O0OTDO
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M(G) + Z(G)

@ The previous graph Hs is called a 5-sun. It is an example of
M(G) £ Z(G).

2= M(Hs) § Z(Hs) =3
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M(G) + Z(G)

@ The previous graph Hs is called a 5-sun. It is an example of
M(G) £ Z(G).

2= M(Hs) § Z(Hs) =3

@ 8 is the minimum rank; but maximum size of triangle is 7!
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M(G) + Z(G)

@ The previous graph Hs is called a 5-sun. It is an example of
M(G) £ Z(G).

2= M(Hs) § Z(Hs) =3

@ 8 is the minimum rank; but maximum size of triangle is 7!

@ How do we know?
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M(G) + Z(G)

@ The previous graph Hs is called a 5-sun. It is an example of
M(G) £ Z(G).

2= M(Hs) § Z(Hs) =3

@ 8 is the minimum rank; but maximum size of triangle is 7!
e How do we know?

@ Proven by examining the number of zeros on the diagonal
[Barioli, Fallat, and Hogben, 04].

Jephian C.-H. Lin Sieving Process & Minimum Rank 8/11



Control diagonal pattern by loops

e For a simple graph G, pick / € V(G) to add one loop, and
call it G;.
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Control diagonal pattern by loops

e For a simple graph G, pick / € V(G) to add one loop, and
call it G;.

e M(G)): no loop < 0; loop <> nonzero.
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Control diagonal pattern by loops

@ For a simple graph G, pick / ¢ V(G) to add one loop, and
call it G;.
e M(G)): no loop < 0; loop <> nonzero.

° Z(C?/): If x isblue—and has exactly one white neighbor y,
change the color of y to blue at next step.
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Control diagonal pattern by loops

For a simple graph G, pick I ¢ V(G) to add one loop, and
call it G;.

M(G;): no loop <> 0; loop <> nonzero.

Z(C?/): If x isblue—and has exactly one white neighbor y,
change the color of y to blue at next step.

Triangle argument still can prove M(G;) < Z(G))

Jephian C.-H. Lin Sieving Process & Minimum Rank 9/11



0
Q
O
-
)
£
=
(@)
c
.9
)
(]
4
(&)
—
o
—
Q
)
c

Pattern for Hg

123 456 7 8 9 10

0/*

0 000 O0O0O0OTP O

0
?

*
?

+ 00 0 0 0 =«

*

0 00 0O0OTGO

*

0 00O
0 00O

70

*

0 0 0 7

0

0

0
0
70

*

?

0 00 0O
0 00O

0
0
0
0

*

*

?

0 00 O0O0O0OTD O

0 00 0O

10

10/11

Sieving Process & Minimum Rank

Jephian C.-H. Lin



0
Q
O
-
)
£
=
(@)
c
.9
)
(]
4
(&)
—
o
—
Q
)
c

Pattern for Hg

123 456 7 8 9 10

0
*

0 000 O0O0TO0ODTP O

70

*

0 000 0 =

*

+ 0 0 0 0 0O

?

0

0 00O
0 00O

70

*

?

0 00O
0 0O

0

0
0
70

*

*

?

0 00 O0O0OTGO
0 00 0O

*

*

*

0 000OOGOT O?

0

0 00 0O

5
6
7
8

9
10

10/11

Sieving Process & Minimum Rank

Jephian C.-H. Lin



0
Q
O
-
)
£
=
(@)
c
.9
)
(]
4
(&)
—
o
—
Q
)
c

Pattern for Hg

139 2 4 10 6 8 5 7

0 00O

* *
0

?

0 0

0 00

*

* 0000 0O

0 0 O

0 0 0O
0 00 0O

70

0
*

0 000 0 0 =
0 000 O0O0OTO

0?2 00

?

0
0 00 0O

*

0 0 0 00O

?

0

10

1
6
8
5
7

10/11

Sieving Process & Minimum Rank

Jephian C.-H. Lin



0
Q
O
-
)
£
=
(@)
c
.9
)
(]
4
(&)
—
o
—
Q
)
c

Pattern for Hg

123 456 7 8 9 10

0 000 O0O0TO0ODTP O

*
70

*

+ 0 0 0 0 0 =«

*

+ 0 0 0 0 0O

?

0

0 00O
0 00O

70

*

?

0 00O
0 0O

0

0
0
70

*

*

?

0 00 O0O0OTGO
0 00 0O

*

*

*

0 000OOGOT O?

0

0 00 0O

5
6
7
8

9
10

10/11

Sieving Process & Minimum Rank

Jephian C.-H. Lin



0
Q
O
-
)
£
=
(@)
c
.9
)
(]
4
(&)
—
o
—
Q
)
c

Pattern for Hg

3546128 107 9

0 00O

*
0 0

= 0 0 0

?

0 0

7

*

0 0 O

+ = 0 0 0 O

0 0 0O
0 00 0O

70

0
*

*

0 000 OGO
0 000 O0O0OTO

?

0
0 00 O0O0TO0OTO O

*
0

0

0 00 0O0OTPO

8

1
10

7
9

10/11

Sieving Process & Minimum Rank

Jephian C.-H. Lin



Sieving Process

Suppose M(G) > k \
/v nonzero-vertex ()

B cannot

I1CV(G) — _ — Possible Patterns
force Gy
\ zero-vertex
* 7
B CV(G)
|Bl=Fk—1

@ Many known graphs G with M(G) $ Z(G) can be explained
by this process.
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Sieving Process

Suppose M(G) > k \
/v nonzero-vertex ()

B cannot

I1CV(G) — _ — Possible Patterns
force Gy
\ zero-vertex
* 7
B CV(G)
|Bl=Fk—1

@ Many known graphs G with M(G) $ Z(G) can be explained
by this process.
@ Thanks for your attention!
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[§ AIM Minimum Rank — Special Graphs Work Group (F. Barioli,

B

W. Barrett, S. Butler, S. M. Cioaba, D. Cvetkovié, S. M.
Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S.
Narayan, O. Pryporova, |. Sciriha, W. So, D. Stevanovi¢, H.
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428: 1628-1648, 2008.
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Appl., 392: 289-303, 2004.

L. Deloss, J. Grout, L. Hogben, T. McKay, J. Smith, and G.
Tims. Techniques for determining the minimum rank of a
small graph. Lin. Alg. Appl. 432: 2995-3001, 2010.
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[d H. van der Holst. The maximum corank of graphs with a
2-separation. Lin. Alg. Appl. 428: 1587-1600, 2008.

[d C.R. Johnson and A. Leal Duarte. The maximum multiplicity
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Multilin. Alg., 46: 139-144, 1999.

Jephian C.-H. Lin Sieving Process & Minimum Rank



Looped Multigraph

° Iﬂ 2013, Barioli et. al. proposed enhanced zero forcing number
Z(G),
M(G)<Z(G)<Z(G),

by considering looped graphs.

Jephian C.-H. Lin Sieving Process & Minimum Rank 12/11



Looped Multigraph

@ In 2013, Barioli et. al. proposed enhanced zero forcing number
Z(G),
M(G)<Z(G)<Z(G),
by considering looped graphs.
@ In 2008, Holst gave a reduction formula on cut sets of size
two, by considering multigraphs.
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Looped Multigraph

@ In 2013, Barioli et. al. proposed enhanced zero forcing number
Z(G),
M(G)<Z(G)<Z(G),
by considering looped graphs.
@ In 2008, Holst gave a reduction formula on cut sets of size
two, by considering multigraphs.

@ Considering looped multigraphs G is a natural extension.
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Minimum Rank for Looped Multigraphs

1 2 3 4 5
1 * x 0 0 O
2 *+ 0 = 7?2 0 -— >
s o co o nELm
4 0 ?7 % 0 = > 2 edges = free
5 00 0 * ? @

S(G) = {Ae Mpn(R): A=A, Asatisfies (2)}.
@ The minimum rank of a looped multigraph Gis
mr(G) = min{rank(A): AeS(G)}.
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Minimum Rank for Looped Multigraphs

1 2 3 4 5
1 * x 0 0 O
2 *+ 0 = 7?2 0 -— >
s o co o nELm
4 0 ?7 % 0 = > 2 edges = free
5 00 0 * ? @

S(G) = {Ae Mpn(R): A=A, Asatisfies (2)}.
@ The minimum rank of a looped multigraph G is
mr(G) = min{rank(A): AeS(G)}.

@ Similarly,
M(G) = max{null(A): AeS(G)}.
mr(G) + M(G) =|V(G)|
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:

o some vertices B ¢ V/(G) are set blue initially, while others
remain white;
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:
o some vertices B ¢ V/(G) are set blue initially, while others
remain white;
o If x isblue-and has exactly one white neighbor y, and there is

exactly one edge between x and y, change the color of y to
blue at next step.
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:
o some vertices B ¢ V/(G) are set blue initially, while others
remain white;
o If x isblue-and has exactly one white neighbor y, and there is

exactly one edge between x and y, change the color of y to
blue at next step.

o If Bc V(G) can force all vertices to blue, B is called a zero
forcing set.
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:

o some vertices B ¢ V/(G) are set blue initially, while others
remain white;

o If x isblue-and has exactly one white neighbor y, and there is
exactly one edge between x and y, change the color of y to
blue at next step.

o If Bc V(G) can force all vertices to blue, B is called a zero
forcing set.

@ The zero forcing number Z(G) of a looped multigraph G is
the minimum cardinality of a zero forcing set.
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Zero Forcing Number for Looped Multigraphs

@ The zero forcing process on a looped multigraph G is the
color-change process using the following rules:

o some vertices B ¢ V/(G) are set blue initially, while others
remain white;

o If x isblue-and has exactly one white neighbor y, and there is
exactly one edge between x and y, change the color of y to
blue at next step.

o If Bc V(G) can force all vertices to blue, B is called a zero
forcing set.

@ The zero forcing number Z(G) of a looped multigraph G is
the minimum cardinality of a zero forcing set.

e For all looped multigraph G, M(G) < Z(G).
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What happens on Hs? (if zero)

o Suppose A= (a;) € S(Hs) with aj; = 0, then Ae S(G), G is
the looped multigraph below.
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What happens on Hs? (if zero)

o Suppose A= (a;) € S(Hs) with aj; = 0, then Ae S(G), G is
the looped multigraph below.
@ Then null(A) < M(G) < Z(G) =2.
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What happens on Hs? (if zero)

o Suppose A= (a;) € S(Hs) with aj; = 0, then Ae S(G), G is
the looped multigraph below.
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What happens on Hs? (if zero)

o Suppose A= (a;) € S(Hs) with aj; = 0, then Ae S(G), G is
the looped multigraph below.
@ Then null(A) < M(G) < Z(G) =2.
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What happens on Hs? (if zero)

o Suppose A= (a;) € S(Hs) with aj; = 0, then Ae S(G), G is
the looped multigraph below.

@ Then null(A) < M(G) < Z(G) = 2.

e Thatis, if M(G) = 3, then the corresponding ai; is nonzero!
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.
@ Then null(A) < M(G) < Z(G) =2.
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.
@ Then null(A) < M(G) < Z(G) =2.
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.
@ Then null(A) < M(G) < Z(G) =2.
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.
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What happens on Hs? (if nonzero)

o Suppose A= (a;) € S(Hs) with aj; # 0, then Ae S(G), G is
the looped multigraph below.

@ Then null(A) < M(G) < Z(G) = 2.

@ Thatis, if M(G) = 3, then the corresponding a;1 is zero!
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Sieving Process

e In seeking of M(G), find a possible value k. (e.g. k= Z(G).)
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e In seeking of M(G), find a possible value k. (e.g. k= Z(G).)
@ Suppose M(G) = k, use a set B of size k-1 to find possible
diagonal patterns.
@ Find zero-vertex, or nonzero-vertex.
@ If a vertex is simultaneously a zero-vertex and a
nonzero-vertex, a contradiction.

@ Either zero-vertex or nonzero-vertex yields invertible principal
submatrix. Do the row/column operation, and focus on the

smaller graph.
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Sieving Process

In seeking of M(G), find a possible value k. (e.g. k=Z(G).)

Suppose M(G) = k, use a set B of size k-1 to find possible
diagonal patterns.

@ Find zero-vertex, or nonzero-vertex.
@ If a vertex is simultaneously a zero-vertex and a
nonzero-vertex, a contradiction.
@ Either zero-vertex or nonzero-vertex yields invertible principal
submatrix. Do the row/column operation, and focus on the
smaller graph.

Many known graphs G with M(G) £ Z(G) can be explained
by this process.

Thanks for your attention!

(]
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