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Cvetkovié¢'s inertia bound

The inertia of a matrix A is (n4+(A), n—(A), no(A)), which are the
number of positive, negative, and zero eigenvalues of A,
respectively.

Theorem (Cvetkovi¢ 1971)
Let G be a graph and A its adjacency matrix. Then

a(G) < min{n—ni(A),n—n_(A)},

where o(G) is the independence number.
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Godsil’'s Lemma

Let G be a graph. The path cover number P(G) is the minimum
number of disjoint induced paths that can cover G.

Theorem (Godsil 1984)
Let G be a tree with adjacency matrix A. Then

mx(A) < P(G)

for any eigenvalue \ of A.
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General spectral graph theory

Given a grpah G on n vertices, consider the family S(G) of n x n
real symmetric matrices M with

M;j =0 if i#jand {i,j} is not an edge,
M;; #0 ifi#jand {i,j} is an edge,
MijeR ifi=].

Thus, S(G) includes the adjacency matrix, the Laplacian matrix,

and so on.
<—’@
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The general version of Cvetkovié's inertia bound

Theorem
Let G be a graph and A € S(G) with zero diagonal entries. Then

a(G) < min{n— ny(A),n—n_(A)},

where a(G) is the independence number.
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The general version of Cvetkovié's inertia bound

Theorem
Let G be a graph and A € S(G) with zero diagonal entries. Then

a(G) < min{n— ny(A),n—n_(A)},
where a(G) is the independence number.

» Sinkovic (2017) proved Paley 17 is an example where the
inertia bound is not tight. (So far, all known constructions are
related to Paley 17.)

» He is going to talk about it at the Joint Meeting 2018 in San
Diego!
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The general version of Godsil's lemma

Theorem (Johnson and Leal Duarte 1999)
Let G be a tree and A € S(G). Then

mx(A) < P(G)

for any eigenvalue A of A.
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The general version of Godsil's lemma

Theorem (Johnson and Leal Duarte 1999)
Let G be a tree and A € S(G). Then

mx(A) < P(G)
for any eigenvalue A of A.

> Indeed, for any tree, there is a matrix A with an eigenvalue A
such that my(A) = P(G).
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Domination number

Let G be a graph. The domination number (G) is the minimum
cardinality of a set X such that

L Nelxl = v(6).

xeX

The total domination number y*(G) is the minimum cardinality of
a set X such that
U Ne(x) = v(G).

xeX

For example, v(P3) = 1 but v*(P3) = 2.
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Greedy algorithm

» Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.
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Greedy algorithm

» Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.

» For solving a maze, you may keep going straight at fork. But
it might lead you to a dead end.
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Greedy algorithm

» Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.

» For solving a maze, you may keep going straight at fork. But
it might lead you to a dead end.

» For a coloring problem, you may keep using the smallest free
number to color the next vertex, showing x(G) < A(G) + 1.
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Greedy algorithm

» Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.

» For solving a maze, you may keep going straight at fork. But
it might lead you to a dead end.

» For a coloring problem, you may keep using the smallest free
number to color the next vertex, showing x(G) < A(G) + 1.

» Greedy algorithm for domination number: When X are chosen

and not yet dominate the whole graph, pick a vertex v such
that

N[\ | Nalx] # 0.

xeX
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Grundy domination number

The Grundy domination number 7, (G) is the length of the longest
sequence (vi, va,. .., vk) such that

i-1
Ne[vil \ | Ne[v] # 0.

j=t

General spectral graph theory: |IEPG Math & Stats, University of Victoria



Grundy domination number

The Grundy domination number 7, (G) is the length of the longest
sequence (vi, va,. .., vk) such that

i-1
Ne[vil \ | Ne[v] # 0.

j=t

I
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Grundy domination number

The Grundy domination number 7,4, (G) is the length of the longest
sequence (vi, va, ..., vk) such that

Nolvl\ | Nel] # 0.

Jj=1
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Grundy domination number

The Grundy domination number v4:(G) is the length of the longest
sequence (vi, va,. .., vk) such that

i—1
Ne[vil\ | Naly] # 0.

Jj=1
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Grundy domination number

The Grundy domination number v4:(G) is the length of the longest
sequence (vi, va,. .., vk) such that

i—1
Ne[vil\ | Naly] # 0.

Jj=1
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Grundy domination number

The Grundy domination number v4:(G) is the length of the longest

sequence (vi, va,. .., vk) such that
i-1
Nelul \ [ Nelw] # 0.
j=1
® O
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-
Grundy domination number

The Grundy domination number ~4.(G) is the length of the longest

sequence (vi, va,. .., vk) such that
i-1
Ne[vil \ | Ne[v] # 0.
j=1
® O
S0 Yer(G) = 5.
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Grundy total domination number

The Grundy total domination number 7, (G) is the length of the

longest sequence (vi, va, ..., vk) such that
i—1
Ng(vi) \ U Ng(v;) # 0.
j=1
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Grundy total domination number

The Grundy total domination number 7, (G) is the length of the

longest sequence (vi, va, ..., vk) such that
i—1
Ng(vi) \ U Ng(v;) # 0.
j=1
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Grundy total domination number

The Grundy total domination number 7, (G) is the length of the

longest sequence (vi, va, ..., vk) such that
i—1
Ng(vi) \ U Ng(v;) # 0.
j=1

O
O—O+—®
Q
o
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Grundy total domination number

The Grundy total domination number 7, (G) is the length of the

longest sequence (vi, va, ..., vk) such that
i—1
Ne(v) \ | M) # 0.
j=1
O O—@
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Grundy total domination number

The Grundy total domination number 7, (G) is the length of the

longest sequence (vi, va, ..., vk) such that
i—1
Ne(v) \ | M) # 0.
j=1
O O
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-
Grundy total domination number

The Grundy total domination number 7{.(G) is the length of the

longest sequence (vi, va, ..., vk) such that
i-1
Ne(vi) \ | Ne(v;) # 0.
j=1
O o—0

So 75,(G) = 4.
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Rank bound

Theorem (L 2017)
Let G be a graph. Then

1e:(6) < rank(A)
for any A € S(G) with diagonal entries all nonzero; and
14,(G) < rank(A)

for any A € S(G) with zero diagonal.
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Let P be the Petersen graph. Consider

[c—1 K [Cc &
A_[ . C,_,] andB_Ls _C,],

where C and C' are the adjacency matrix of G5 and Gs,
respectively. Then 7, (P) < rank(A) =5 and the sequence
(1,2,3,4,5) is optimal.
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Let P be the Petersen graph. Consider

[c—1 K [Cc &
A_[ . C,_,] andB_Ls _C,],

where C and C' are the adjacency matrix of G5 and Gs,
respectively. Then 75 (G) < rank(B) = 6 and the sequence
(9,1,2,3,4,5) is optimal.
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Proof of the theorem

> Goal: Show v,:(G) < rank(A) for all A € S(G) with nonzero
diagonal entries.

» Key: Permutation does not change the rank, and the
dominating sequence gives an echelon form.
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Proof of the theorem

> Goal: Show v,:(G) < rank(A) for all A € S(G) with nonzero
diagonal entries.

» Key: Permutation does not change the rank, and the
dominating sequence gives an echelon form.

Pick an optimal sequence (vi,..., vk) and a matrix A. Let N; be
the vertices dominated by v; but not any vertex before v;.

Ny N, Ny
v [ %o ox 0 0 ]
Vs ? x---% 0 :
? ? 0
Vi ? ce ? Kook
other vertices L ? ? ? ]
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Z-Grundy domination number and zero forcing number

The Z-Grundy domination number 'ngr(G) is the length of the

longest sequence (v1, v2,. .., vk) such that
i-1
Ne(v)\ | Nelw] # 0.
j=1

Theorem (Bresar et al. 2017; L 2017)
For any graph, fygzr(G) < rank(A) for any matrix A € S§(G).
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Z-Grundy domination number and zero forcing number

The Z-Grundy domination number 'ngr(G) is the length of the

longest sequence (v1, v2,. .., vk) such that
i-1
Ne(v)\ | Nelw] # 0.
j=1

Theorem (Bresar et al. 2017; L 2017)

For any graph, fygzr(G) < rank(A) for any matrix A € S§(G).
Theorem (AIM 2008)

For any graph, null(A) < Z(G) for any matrix A € S(G).

» Here Z(G) is the zero forcing number defined through a
graph searching process.

» Bresar et al. proved that Z(G) = |V(G)| — fngr(G).
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Upper bound for the multiplicity

» Recall that null(A — AI) = my(A), while A € S(G) if and only
if A— A € S(G).

Theorem (AIM 2008)
For any graph G and a matrix A € S(G),

mx(A) < Z(G) for all eigenvalue \ of A. 2(G)

my(A) P(G)
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Upper bound for the multiplicity

» Recall that null(A — AI) = my(A), while A € S(G) if and only
if A— A € S(G).

Theorem (AIM 2008)
For any graph G and a matrix A € S(G),

mx(A) < Z(G) for all eigenvalue \ of A. 2(G)

Theorem (Johnson and Leal Duarte 1999)
Let G be a tree and A € S(G). Then my(A) P(G)

my(A) < P(G) for any eigenvalue \ of A.
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Inverse eigenvalue problem of a graph

The inverse eigenvalue problem of a graph (IEPG) aims to find all
spectra in S(G) for a given graph.

A Multiplicities

I »

A1 A2 Aq

eigenvalues
g > len(unique shortest path)+1
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