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Spectral graph theory

0 1 0
1 0 1
0 1 0


 1 −1 0
−1 2 −1
0 −1 1


 1 − 1√

2
0

− 1√
2

1 − 1√
2

0 − 1√
2

1



General spectral graph theory: IEPG 3/24 Math & Stats, University of Victoria
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Cvetković’s inertia bound

The inertia of a matrix A is (n+(A), n−(A), n0(A)), which are the
number of positive, negative, and zero eigenvalues of A,
respectively.

Theorem (Cvetković 1971)

Let G be a graph and A its adjacency matrix. Then

α(G ) ≤ min{n − n+(A), n − n−(A)},

where α(G ) is the independence number.
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Godsil’s Lemma

Let G be a graph. The path cover number P(G ) is the minimum
number of disjoint induced paths that can cover G .

Theorem (Godsil 1984)

Let G be a tree with adjacency matrix A. Then

mλ(A) ≤ P(G )

for any eigenvalue λ of A.
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General spectral graph theory

Given a grpah G on n vertices, consider the family S(G ) of n × n
real symmetric matrices M with

Mi ,j = 0 if i 6= j and {i , j} is not an edge,

Mi ,j 6= 0 if i 6= j and {i , j} is an edge,

Mi ,j ∈ R if i = j .

Thus, S(G ) includes the adjacency matrix, the Laplacian matrix,
and so on.

graph S(G )
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The general version of Cvetković’s inertia bound

Theorem
Let G be a graph and A ∈ S(G ) with zero diagonal entries. Then

α(G ) ≤ min{n − n+(A), n − n−(A)},

where α(G ) is the independence number.

I Sinkovic (2017) proved Paley 17 is an example where the
inertia bound is not tight. (So far, all known constructions are
related to Paley 17.)

I He is going to talk about it at the Joint Meeting 2018 in San
Diego!
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The general version of Godsil’s lemma

Theorem (Johnson and Leal Duarte 1999)

Let G be a tree and A ∈ S(G ). Then

mλ(A) ≤ P(G )

for any eigenvalue λ of A.

I Indeed, for any tree, there is a matrix A with an eigenvalue λ
such that mλ(A) = P(G ).
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Domination number

Let G be a graph. The domination number γ(G ) is the minimum
cardinality of a set X such that⋃

x∈X
NG [x ] = V (G ).

The total domination number γt(G ) is the minimum cardinality of
a set X such that ⋃

x∈X
NG (x) = V (G ).

For example, γ(P3) = 1 but γt(P3) = 2.
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Greedy algorithm

I Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.

I For solving a maze, you may keep going straight at fork. But
it might lead you to a dead end.

I For a coloring problem, you may keep using the smallest free
number to color the next vertex, showing χ(G ) ≤ ∆(G ) + 1.

I Greedy algorithm for domination number: When X are chosen
and not yet dominate the whole graph, pick a vertex v such
that

NG [v ] \
⋃
x∈X

NG [x ] 6= ∅.
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Grundy domination number

The Grundy domination number γgr(G ) is the length of the longest
sequence (v1, v2, . . . , vk) such that

NG [vi ] \
i−1⋃
j=1

NG [vj ] 6= ∅.
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Grundy domination number

The Grundy domination number γgr(G ) is the length of the longest
sequence (v1, v2, . . . , vk) such that

NG [vi ] \
i−1⋃
j=1

NG [vj ] 6= ∅.

So γgr(G ) = 5.
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Grundy total domination number

The Grundy total domination number γtgr(G ) is the length of the
longest sequence (v1, v2, . . . , vk) such that

NG (vi ) \
i−1⋃
j=1

NG (vj) 6= ∅.
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Grundy total domination number

The Grundy total domination number γtgr(G ) is the length of the
longest sequence (v1, v2, . . . , vk) such that

NG (vi ) \
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j=1
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Rank bound

Theorem (L 2017)

Let G be a graph. Then

γgr(G ) ≤ rank(A)

for any A ∈ S(G ) with diagonal entries all nonzero; and

γtgr(G ) ≤ rank(A)

for any A ∈ S(G ) with zero diagonal.
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Let P be the Petersen graph. Consider

A =

[
C − I I5
I5 C ′ − I

]
and B =

[
C I5
I5 −C ′

]
,

where C and C ′ are the adjacency matrix of C5 and C5,
respectively. Then γgr(P) ≤ rank(A) = 5 and the sequence
(1, 2, 3, 4, 5) is optimal.
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Proof of the theorem

I Goal: Show γgr(G ) ≤ rank(A) for all A ∈ S(G ) with nonzero
diagonal entries.

I Key: Permutation does not change the rank, and the
dominating sequence gives an echelon form.

Pick an optimal sequence (v1, . . . , vk) and a matrix A. Let Ni be
the vertices dominated by vi but not any vertex before vi .



N1 N2 ··· Nk

v1 ∗ · · · ∗ 0 · · · 0

v2 ? ∗ · · · ∗ 0
...

... ? ?
. . . 0

vk ? · · · ? ∗ · · · ∗
other vertices ? ? ? ?


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Z -Grundy domination number and zero forcing number

The Z -Grundy domination number γZgr(G ) is the length of the
longest sequence (v1, v2, . . . , vk) such that

NG (vi ) \
i−1⋃
j=1

NG [vi ] 6= ∅.

Theorem (Brešar et al. 2017; L 2017)

For any graph, γZgr(G ) ≤ rank(A) for any matrix A ∈ S(G ).

Theorem (AIM 2008)

For any graph, null(A) ≤ Z (G ) for any matrix A ∈ S(G ).

I Here Z (G ) is the zero forcing number defined through a
graph searching process.

I Brešar et al. proved that Z (G ) = |V (G )| − γZgr(G ).
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Upper bound for the multiplicity

I Recall that null(A− λI ) = mλ(A), while A ∈ S(G ) if and only
if A− λI ∈ S(G ).

Theorem (AIM 2008)

For any graph G and a matrix A ∈ S(G ),

mλ(A) ≤ Z (G ) for all eigenvalue λ of A.

Theorem (Johnson and Leal Duarte 1999)

Let G be a tree and A ∈ S(G ). Then

mλ(A) ≤ P(G ) for any eigenvalue λ of A.

Z (G )

mλ(A) P(G )
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Inverse eigenvalue problem of a graph

The inverse eigenvalue problem of a graph (IEPG) aims to find all
spectra in S(G ) for a given graph.

λ1 λ2 λq

multiplicities

eigenvalues

≤ Z (G )

q ≥ len(unique shortest path)+1
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