The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

June 16, 2023 24th Conference of the International Linear Algebra Society, Madrid, Spain

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

ㅋㅋ ㅋㅋㅋ

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

< □ > < 同 > < 回 > < 回 > < 回 >

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

$$= \begin{cases} ? & * & 0 & 0 \\ * & ? & * & 0 \\ 0 & * & ? & * \\ 0 & 0 & * & ? \end{cases} \xrightarrow{\text{spec}} \{1, 2, 3, 4\}$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶
 June 16, 2023

Supergraph lemma

Lemma (BFHHLS 2017)

Let G and H' be two graphs with V(G) = V(H') and $E(G) \subseteq E(H')$. If $A \in S(G)$ has the SSP, then there is a matrix $A' \in S(H')$ such that

- $\operatorname{spec}(A') = \operatorname{spec}(A)$,
- A' has the SSP, and

SSP will be defined later

Inverse function theorem in \mathbb{R}^2

Fix a point $\mathbf{a} \in \mathbb{R}^2$. Combine two perturbations:

 $\frac{dF}{db,\theta}$ invertible \implies any nearby w can be written as $\mathbf{w} = F(b', \theta')$

For whatever y value nearby, there is \mathbf{a}' with $\|\mathbf{a}'\| = \|\mathbf{a}\|$.

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

Theorem (Inverse function theorem)

Let $F : U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is invertible, then F is locally invertible around \mathbf{u}_0 .

Theorem (FHLS 2022)

Let $F: U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is surjective, then F is locally surjective around \mathbf{u}_0 .

	Jephian	CH.	Lin ((NSYSL	J)
--	---------	-----	-------	--------	----

Bifurcation for IEP-G

Inverse function theorem in $\operatorname{Sym}_n(\mathbb{R})$

Fix a point $A \in \mathcal{S}(G)$. Combine two perturbations:

 \dot{F} surjective \implies any nearby M can be written as M = F(B', K')

For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$. Jephian C.-H. Lin (NSYSU) Bifurcation for IEP-G June 16, 2023 6/16

Pattern perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

Define $\mathcal{S}^{\mathrm{cl}}(G)$ as the topological closure of $\mathcal{S}(G)$:

$$\mathcal{S}^{\mathrm{cl}}(G) = \{ A = \left[a_{i,j} \right] \in \mathrm{Sym}_n(\mathbb{R}) : a_{i,j} = 0 \iff \{i,j\} \in E(\overline{G}) \}.$$

Let $A \in \mathcal{S}(G)$. Then $A + B \in \mathcal{S}(G)$ when ||B|| is small enough.

The tangent space of F(B, K) at (O, O) with respect to B is $\mathcal{S}^{cl}(G)$.

and a second second second	~	· · · /	NICV	C I I \
Jebnian (E . I	LIN (I	IN SY	SUL
		(·		,

Isospectral perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

The function e^{K} is a bijection between

{skew-symmetric matrices nearby O} \rightarrow {orthogonal matrices nearby I} for real matrices.

The tangent space of F(B,Q) at (O,O) with respect to Q is $\{-KA + AK : K \in \operatorname{Skew}_n(\mathbb{R})\}.$

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Let A be a real symmetric matrix. Then A has the strong spectral property (SSP) if X = O is the only real symmetric matrix that satisfies

$$A \circ X = I \circ X = [A, X] = O.$$

Let $F(B, K) = e^{-K}Ae^{K} + B$. Then the following are equivalent:

- A has the SSP.
- $\mathfrak{S}^{\mathrm{cl}}(G) + \{-KA + AK : K \in \mathrm{Skew}_n(\mathbb{R})\} = \mathrm{Sym}_n(\mathbb{R}).$
- **③** The derivative \dot{F} is surjective.

イロト イポト イヨト イヨト 二日

Illustration of the supergraph lemma

For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

< ロ > < 同 > < 回 > < 回 > < 回 >

10/16

They must be true, right?

Let $A \in \mathcal{S}(G)$ with the SSP. People *believed* that ...

- For any set of real numbers Λ' nearby spec(A), there is a matrix $A' \in \mathcal{S}(G)$ with spec(A') = Λ' .
- For any refinement \mathbf{m}' of $\mathbf{m}(A)$, there is a matrix $A' \in \mathcal{S}(G)$ with $\mathbf{m}(A') = \mathbf{m}'$.
- For any k > q(A), there is a matrix $A' \in \mathcal{S}(G)$ with q(A') = k.

Let $A \in \mathcal{Q}(P)$ be a nilpotent matrix with the nSSP. People *knew* that ...

 For any set of complex numbers Λ' (invariant under conjugation) nearby {0,...,0}, there is a matrix A' ∈ Q(P) with spec(A') = Λ'.

nSSP = the condition of the nilpotent-centralizer method

Theorem (FHLS 2022)

Let $A \in \mathcal{S}(G)$ with the SSP. Then for any set of real numbers Λ' nearby $\operatorname{spec}(A)$, there is a matrix A' with $\operatorname{spec}(A') = \Lambda'$.

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

The nSSP

Definition

Let A be a real matrix. Then A has the non-symmetric strong spectral property (nSSP) if X = O is the only real matrix that satisfies

$$A \circ X = [A, X^{\top}] = O.$$

Let $\mathcal{Q}^{v}(P)$ be the set of matrices with the same zero entries as P. Let $F(B,Q) = Q^{-1}(A+B)Q$, where $B \in Q^{v}(P)$. Then the following are

equivalent:

- A has the nSSP.
- $Q^{\mathbf{v}}(P) + \{-LA + AL : L \in \operatorname{Mat}_{n}(\mathbb{R})\} = \operatorname{Mat}_{n}(\mathbb{R}).$
- **3** The derivative \dot{F} is surjective.

Theorem (FHLS 2022)

Let $A \in \mathcal{Q}(P)$ with the nSSP for some sign pattern P. Then for any set of complex numbers Λ' (invariant under conjugation) nearby $\operatorname{spec}(A)$, there is a matrix $A' \in \mathcal{Q}(P)$ with $\operatorname{spec}(A') = \Lambda'$.

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

► 4 Ξ ►

ILAS2025 in Taiwan

https://ilas2025.tw/

< □ > < 同 > < 回 > < 回 > < 回 >

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

15/16

Jephian C.-H. Lin (NSYSU)

Bifurcation for IEP-G

June 16, 2023

15/16

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.

Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph. *Electron. J. Combin.*, 24:#P2.40, 2017.

L. Hogben, J. C.-H. Lin, and B. Shader. *Inverse Problems and Zero Forcing for Graphs.* American Mathematical Society, Providence, 2022.