Inverse Fiedler vector problem of a graph

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

June 24, 2025 26th Conference of the International Linear Algebra Society, Kaohsiung, Taiwan

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph

Laplacian matrix

 $\widehat{\mathbf{3}}$

 $\overline{5}$

Definition

Let G be a graph on n vertices. The Laplacian matrix of G is the $n\times n$ matrix $L(G)=\left[\ell_{i,j}\right]$ such that

$$\ell_{i,j} = \begin{cases} -1 & \text{if } \{i,j\} \in E(G), \\ \deg_G(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June 2

Algebraic connectivity and Fiedler vector

Definition

Let G be a grpah and L its Laplacian matrix. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ the corresponding eigenbasis. Then λ_2 is the algebraic connectivity and \mathbf{v}_2 is the Fiedler vector of G.

•
$$\lambda_1 = 0$$
 and $\mathbf{v}_1 = \mathbf{1}$ for any graph.

- L is PSD.
- $\operatorname{null}(L) = \#$ of components of G, so $\lambda_2 > 0 \iff G$ is connected.
- $\lambda_2(G) \leq \kappa(G)$, the vertex connectivity.

Notes

- Fiedler introduced the algebraic connectivity in 1973.
- Fiedler called \mathbf{v}_2 as characteristic valuation in 1975.
- Fiedler visited NSYSU for WONRA2012.

Eleventh Workshop on Numerical Ranges and Numerical Radii (WONRA 2012)

July 9-12, 2012, National Sun Yat-sen University, Kaohsiung, Taiwan

Source: https://www-math.nsysu.edu.tw/~wong/WONRA2012/

Jephian C.-H. Lin (NSYSU)

Inverse Fiedler vector problem of a graph

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Why Fiedler vector? P_n

5/22

Why Fiedler vector? C_n

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June 2

■ ► ▲ ■ ► ■ > June 24, 2025 6 / 22

イロト イヨト イヨト イヨト

Why Fiedler vector? $P_m \Box P_n$

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June 24, 2025

7/22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Characteristic set: Fiedler vector on a tree

Theorem (Fiedler 1975)

Let T be a tree and $\mathbf{v}_2 = (x_i)$ its Fiedler vector. Then either

- there is a unique vertex i with $x_i = 0$ that is incident to some j with $x_j \neq 0$ (Type I), or
- **2** there is a unique edge $\{i, j\}$ such that $x_i x_j < 0$ (**Type II**).

Either $\{i\}$ or $\{i, j\}$ is called the characteristic set, which is independent of the choice of \mathbf{v}_2 .

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph

June 24, 2025 8 / 22

Courant nodal domain theorem: Laplacian eigenvector on a graph

Theorem (Courant nodal domain theorem; BGLT 2001) Let G be a connected graph and $\mathbf{v}_2 = (x_i)$ its Fiedler vector. Let

$$N_{\geq 0} = \{i : x_i \geq 0\}$$
 and $N_{\leq 0} = \{i : x_i \leq 0\}.$

Then

of components in $G[N_{\geq 0}] + \#$ of components in $G[N_{\leq 0}] \leq 2$.

When v_2 is nowhere zero, we say $\{N_{\geq 0}, N_{\leq 0}\}$ is a spectral bipartition of G.

イロト イヨト イヨト イヨト

Weighted Laplacian matrix

Definition

Let G be a weighted graph on n vertices with weights $w_{i,j}$. The weighted Laplacian matrix of G is the $n \times n$ matrix $L(G) = \lfloor \ell_{i,j} \rfloor$ such that

$$\ell_{i,j} = \begin{cases} -w_{i,j} & \text{if } \{i,j\} \in E(G) \\ \sum_{k:k \sim i} w_{i,k} & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph J

Let G be a grpah and L its weighted Laplacian matrix. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L and $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ the corresponding eigenbasis. Then λ_2 is the algebraic connectivity and \mathbf{v}_2 is the Fiedler vector of the weighted graph.

•
$$\lambda_1 = 0$$
 and $\mathbf{v}_1 = \mathbf{1}$ for any graph.

• L is PSD.

- $\operatorname{null}(L) = \#$ of components of G, so $\lambda_2 > 0 \iff G$ is connected.
- $\lambda_2(G) \leq \kappa(G)$, the vertex connectivity.

Let G be a grpah and L its weighted Laplacian matrix. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ the corresponding eigenbasis. Then λ_2 is the algebraic connectivity and \mathbf{v}_2 is the Fiedler vector of G.

- Characteristic set is still valid.
- Courant nodal domain theorem is still valid.
- Colin de Verdière parameter $\mu(G) \sim$ maximum multiplicity of the algebraic connectivity over all "good" discrete Schrödinger operators.

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June 24, 2025

イロト イポト イヨト イヨト 二日

Let G be a grpah and L its weighted Laplacian matrix. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ the corresponding eigenbasis. Then λ_2 is the algebraic connectivity and \mathbf{v}_2 is the Fiedler vector of G.

- Characteristic set is still valid.
- Courant nodal domain theorem is still valid.
- Colin de Verdière parameter $\mu(G) \sim$ maximum multiplicity of the algebraic connectivity over all "good" discrete Schrödinger operators.

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June

- ロ ト - 4 同 ト - 4 回 ト - - 三日

Let G be a grpah and L its weighted Laplacian matrix. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ the corresponding eigenbasis. Then λ_2 is the algebraic connectivity and \mathbf{v}_2 is the Fiedler vector of G.

- Characteristic set is still valid.
- Courant nodal domain theorem is still valid.
- Colin de Verdière parameter $\mu(G) \sim \text{maximum multiplicity of the}$ algebraic connectivity over all "good" discrete Schrödinger operators.

くロッ くぼう くほう くほう 二日

- For a tree, can the characterisitc set be anywhere?
- For a graph, can the spectral bipartition be any partition of the vertex set?
- For a graph, can any vector be the Fiedler vector of some weighted Laplacian matrix?

13/22

Let G be a graph. Define $S_L(G)$ as the family of all weighted Laplacian matrices $A = [a_{ij}]$.

IFPL: What are the possible λ_2, \mathbf{v}_2 of a matrix in $\mathcal{S}_L(G)$?

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph June 24, 2025

< 回 > < 回 > < 回 >

Let G be a graph. Define $S_L(G)$ as the family of all weighted Laplacian matrices $A = [a_{ij}]$.

IFPL: What are the possible λ_2 , \mathbf{v}_2 of a matrix in $\mathcal{S}_L(G)$?

14/22

Fiedler's theoerem

Let T be a tree and L its weighted Laplacian matrix corresponding to the weight assignment w. Let x the Fiedler vector. Then exactly one of the following two cases will occur:

Type I Some entries of x are zero. In this case, there is exactly a vertex i with $x_i = 0$ that is adjacent some vertex j with $x_j \neq 0$. Moreover, for any path in T starting at i, the values of x along the path is either strictly increasing, strictly decreasing, or constantly zero. We say $\{i\}$ is the characteristic set of (T, \mathbf{w}) .

Inverse Fiedler vector problem of a graph

Fiedler's theoerem

Let T be a tree and L its weighted Laplacian matrix corresponding to the weight assignment w. Let x the Fiedler vector. Then exactly one of the following two cases will occur:

Type II No entry of x is zero. In this case, there is exactly an edge $\{i, j\}$ with $x_i x_j < 0$, say $x_i < 0 < x_j$. Moreover, for any path starting at i without passing j, the values of x along the path is strictly decreasing; for any path starting at j without passing i, the values of x along the path is strictly increasing. We say $\{i, j\}$ is the characteristic set of (T, \mathbf{w}) .

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph

Fiedler-like vector

Definition

Let T be a tree on n vertices. A vector $\mathbf{x} = [x_i] \in \mathbb{R}^{V(T)}$ is said to be Fiedler-like with respect to T if $\mathbf{1}^\top \mathbf{x} = 0$ and one of the following two conditions holds:

- Type I There is exactly a vertex i with $x_i = 0$ that is adjacent to some vertex j with $x_j \neq 0$. And for any path in T starting at i, the values of x along the path is either strictly increasing, strictly decreasing, or constantly zero.
- Type II There is exactly an edge $\{i, j\}$ with $x_i x_j < 0$, say $x_i < 0 < x_j$. And for any path starting at *i* without passing *j*, the values of x along the path is strictly decreasing; for any path starting at *j* without passing *i*, the values of x along the path is strictly increasing.

June 24, 2025 16 / 22

イロト イポト イヨト イヨト 二日

General observations

- Given G and x, we want to solve $A\mathbf{x} = \lambda \mathbf{x}$ for some $A \in \mathcal{S}_L(G)$.
- By rescaling A, we may assume $\lambda = 1$.
- Every $A \in \mathcal{S}_L(G)$ can be written as $A = NWN^{\top}$, where N is the vertex-edge incidence matrix.
- To solve $NWN^{\top}\mathbf{x} = \mathbf{x}$,
 - Compute $N^{\top}\mathbf{x}$.
 - **2** Solve $N\mathbf{y} = \mathbf{x}$ for \mathbf{y} .
 - Solve W(N^Tx) = y and get diagonal entries of W to be the entrywise division y ⊘ (N^Tx).
 - Check if $\lambda = 1$ is the second smallest eigenvalue.
- $N\mathbf{y} = \mathbf{x}$ is solvable if and only if $\mathbf{1}^{\top}\mathbf{x} = 0$.
- When G is a tree, columns of N are independent and Ny = x has a unique solusion whenever solvable.

Inverse Fiedler vector problem of a tree

Theorem (L and Shirazi 2025+)

Let T be a tree. Then \mathbf{x} is a Fiedler vector of T if and only if \mathbf{x} is Fiedler-like with respect to T.

- Recall: weights $= \mathbf{y} \oslash (N^{\top} \mathbf{x}).$
- $N^{\top}\mathbf{x}$ is the difference of \mathbf{x} (outer inner).
- y is the sum of the branch.

18/22

Inverse Fiedler vector problem of a tree

Theorem (L and Shirazi 2025+)

Let T be a tree. Then \mathbf{x} is a Fiedler vector of T if and only if \mathbf{x} is Fiedler-like with respect to T.

- Recall: weights $= \mathbf{y} \oslash (N^{\top} \mathbf{x}).$
- $N^{\top}\mathbf{x}$ is the difference of \mathbf{x} (outer inner).
- y is the sum of the branch.

Jephian C.-H. Lin (NSYSU) Inverse Fiedler vector problem of a graph J

Inverse Fiedler vector problem of a tree

Theorem (L and Shirazi 2025+)

Let T be a tree. Then \mathbf{x} is a Fiedler vector of T if and only if \mathbf{x} is Fiedler-like with respect to T.

- Recall: weights $= \mathbf{y} \oslash (N^{\top} \mathbf{x}).$
- $N^{\top}\mathbf{x}$ is the difference of \mathbf{x} (outer inner).
- y is the sum of the branch.

Jephian C.-H. Lin (NSYSU)

Inverse Fiedler vector problem of a graph

June 24, 2025 19 / 22

References I

E. BrianDavies, Graham M.L. Gladwell, J. Leydold, and P.F. Stadler. Discrete nodal domain theorems. *Linear Algebra Appl.*, 336:51–60, 2001.

M. Fiedler.

Algebraic connectivity of graphs.

Czechoslovak Math. J., 23:298–305, 1973.

M. Fiedler.

Eigenvalues of acyclic matrices.

Czechoslovak Math. J., 25:607–618, 1975.

M. Fiedler.

A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.

Czechoslovak Math. J., 25:619-633, 1975.

S. Kirkland, M. Neumann, and B. Shader. Characteristic vertices of weighted trees via Perron values. *Linear Multilinear Algebra*, 40:311–325, 1996.