The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

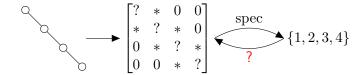
January 7, 2023 2023 Joint Mathematics Meetings, Boston, MA

Joint work with S. M. Fallat, H. T. Hall, and B. Shader

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

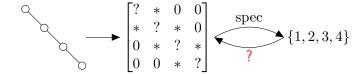


IEP-G: What are the possible spectra of a matrix in S(G)?

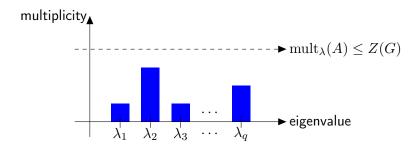
Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

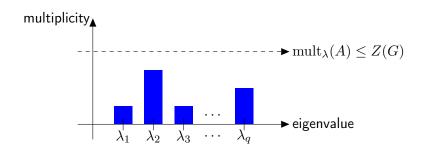
$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$



IEP-G: What are the possible spectra of a matrix in S(G)?



$$\operatorname{spec}(A) = \{\lambda_1^{(m_1)}, \dots, \lambda_q^{(m_q)}\} \implies \frac{\mathbf{m}(A) = (m_1, \dots, m_q),}{q(A) = q}$$



Questions

What are possible $\mathbf{m}(A)$ and what are

$$M(G) = \max\{ \operatorname{mult}_{\lambda}(A) : A \in \mathcal{S}(G), \lambda \in \operatorname{spec}(A) \},$$

$$q(G) = \min\{ q(A) : A \in \mathcal{S}(G) \}?$$

Supergraph lemma

Lemma (BFHHLS 2017)

Let G and H' be two graphs with V(G) = V(H') and $E(G) \subseteq E(H')$. If $A \in \mathcal{S}(G)$ has the SSP, then there is a matrix $A' \in \mathcal{S}(H')$ such that

- $\operatorname{spec}(A') = \operatorname{spec}(A)$,
- A' has the SSP, and
- ||A' A|| can be chosen arbitrarily small.

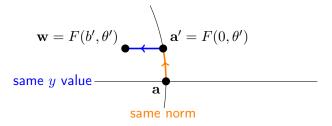
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} \sim 1 & \epsilon & 0 & 0 \\ \epsilon & \sim 2 & \epsilon & 0 \\ 0 & \epsilon & \sim 3 & \epsilon \\ 0 & 0 & \epsilon & \sim 4 \end{bmatrix}$$

SSP will be defined later

Inverse function theorem in \mathbb{R}^2

Fix a point $\mathbf{a} \in \mathbb{R}^2$. Combine two perturbations:

$$\begin{cases} \mathbf{a} + b\mathbf{e}_1 & \text{(same } y\text{)} \\ R_\theta \mathbf{a} & \text{(same norm)} \end{cases} \implies F(b,\theta) = R_\theta \mathbf{a} + b\mathbf{e}_1$$



 $\frac{dF}{db.\theta}$ invertible \implies any nearby ${\bf w}$ can be written as ${\bf w}=F(b',\theta')$

For whatever y value nearby, there is \mathbf{a}' with $\|\mathbf{a}'\| = \|\mathbf{a}\|$.

Inverse function theorem

Theorem (Inverse function theorem)

Let $F:U\to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0\in U$ is invertible, then F is locally invertible around \mathbf{u}_0 .

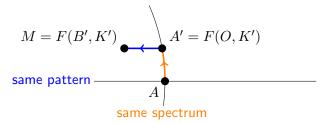
Theorem (FHLS 2022)

Let $F: U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is surjective, then F is locally surjective around \mathbf{u}_0 .

Inverse function theorem in $\operatorname{Sym}_n(\mathbb{R})$

Fix a point $A \in \mathcal{S}(G)$. Combine two perturbations:

$$\begin{cases} A+B & \text{(same pattern)} \\ e^{-K}Ae^K & \text{(same spectrum)} \end{cases} \implies F(B,K) = e^{-K}Ae^K + B$$



 \dot{F} surjective \implies any nearby M can be written as M=F(B',K')

For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

Pattern perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

Define $\mathcal{S}^{\operatorname{cl}}(G)$ as the topological closure of $\mathcal{S}(G)$:

$$\mathcal{S}^{\mathrm{cl}}(G) = \{A = \left[a_{i,j}\right] \in \mathrm{Sym}_n(\mathbb{R}) : a_{i,j} = 0 \iff \{i,j\} \in E(\overline{G})\}.$$

Let $A \in \mathcal{S}(G)$. Then $A + B \in \mathcal{S}(G)$ when ||B|| is small enough.

The tangent space of F(B,K) at (O,O) with respect to B is $\mathcal{S}^{\mathrm{cl}}(G)$.

Isospectral perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

The function e^K is a bijection between

 $\{ \text{skew-symmetric matrices nearby } O \} \rightarrow \{ \text{orthogonal matrices nearby } I \}$

for real matrices.

The tangent space of ${\cal F}(B,Q)$ at $({\cal O},{\cal O})$ with respect to Q is

$$\{-KA + AK : K \in \operatorname{Skew}_n(\mathbb{R})\}.$$

Strong spectral property, transversality, and surjectivity

Definition

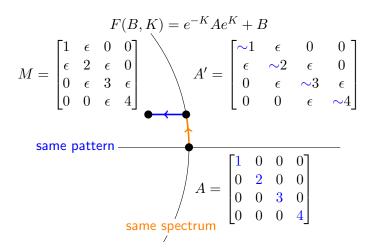
Let A be a real symmetric matrix. Then A has the strong spectral property (SSP) if X=O is the only real symmetric matrix that satisfies

$$A \circ X = I \circ X = [A, X] = O.$$

Let $F(B,K) = e^{-K}Ae^K + B$. Then the following are equivalent:

- lacktriangledown A has the SSP.
- **3** The derivative \dot{F} is surjective.

Illustration of the supergraph lemma



For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

They must be true, right?

Let $A \in \mathcal{S}(G)$ with the SSP. People believed that ...

- For any set of real numbers Λ' nearby $\operatorname{spec}(A)$, there is a matrix $A' \in \mathcal{S}(G)$ with $\operatorname{spec}(A') = \Lambda'$.
- For any refinement \mathbf{m}' of $\mathbf{m}(A)$, there is a matrix $A' \in \mathcal{S}(G)$ with $\mathbf{m}(A') = \mathbf{m}'$.
- For any k > q(A), there is a matrix $A' \in \mathcal{S}(G)$ with q(A') = k.

Let $A \in \mathcal{Q}(P)$ be a nilpotent matrix with the nSSP. People *knew* that ...

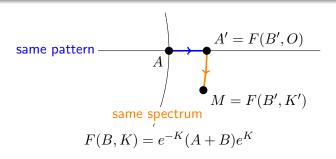
• For any set of complex numbers Λ' (invariant under conjugation) nearby $\{0,\ldots,0\}$, there is a matrix $A'\in\mathcal{Q}(P)$ with $\operatorname{spec}(A')=\Lambda'$.

nSSP = the condition of the nilpotent-centralizer method

Bifurcation lemma

Theorem (FHLS 2022)

Let $A \in \mathcal{S}(G)$ with the SSP. Then for any set of real numbers Λ' nearby $\operatorname{spec}(A)$, there is a matrix A' with $\operatorname{spec}(A') = \Lambda'$.



The nSSP

Definition

Let A be a real matrix. Then A has the non-symmetric strong spectral property (nSSP) if X=O is the only real matrix that satisfies

$$A \circ X = [A, X^{\top}] = O.$$

Let $Q^{v}(P)$ be the set of matrices with the same zero entries as P.

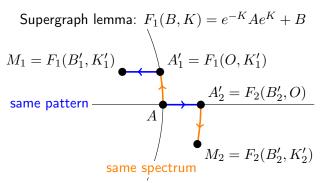
Let $F(B,Q)=Q^{-1}(A+B)Q$, where $B\in \mathcal{Q}^{\mathrm{v}}(P)$. Then the following are equivalent:

- lacktriangledown A has the nSSP.
- **3** The derivative \dot{F} is surjective.

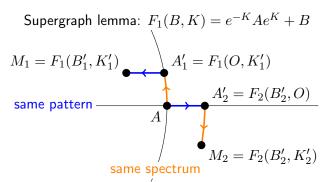
Bifurcation lemma for non-symmetric matrices

Theorem (FHLS 2022)

Let $A \in \mathcal{Q}(P)$ with the nSSP for some sign pattern P. Then for any set of complex numbers Λ' (invariant under conjugation) nearby $\operatorname{spec}(A)$, there is a matrix $A' \in \mathcal{Q}(P)$ with $\operatorname{spec}(A') = \Lambda'$.



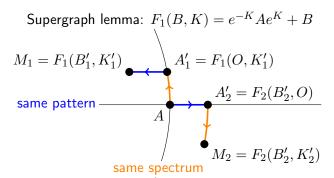
Bifurcation lemma: $F_2(B, K) = e^{-K}(A+B)e^K$



Bifurcation lemma: $F_2(B, K) = e^{-K}(A+B)e^K$

For more IEP-G...

ILAS2025 in Taiwan



Bifurcation lemma: $F_2(B, K) = e^{-K}(A+B)e^K$

For more IEP-G...

Thanks!

References I

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.

Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph.

Electron. J. Combin., 24:#P2.40, 2017.

S. M. Fallat, H. T. Hall, J. C.-H. Lin, and B. Shader.

The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph.

Linear Algebra Appl., 648:70-87, 2022.

S. M. Fallat, L. Hogben, J. C.-H. Lin, and B. Shader.

The inverse eigenvalue problem of a graph, zero forcing, and related parameters.

Notices Amer. Math. Soc., 67:257–261, February, 2020.

References II

L. Hogben, J. C.-H. Lin, and B. Shader. *Inverse Problems and Zero Forcing for Graphs.*American Mathematical Society, Providence, 2022.