Strong properties from a universal point of view

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

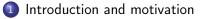
January 8, 2025 2025 Joint Mathematics Meetings, Seattle, WA.

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 1 / 40

Outline



- 2 Supergraph lemma and bifurcation lemma
- Supergraph lemma and liberation lemma

4 Strong properties hidden in the history

(日) (四) (日) (日) (日)

Introduction and motivation

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 3 / 40

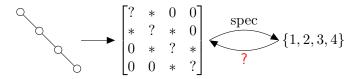
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$



IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 4 / 40

(日)

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

$$\left[\begin{array}{c} ? & * & 0 & 0 \\ * & ? & * & 0 \\ 0 & * & ? & * \\ 0 & 0 & * & ? \end{array} \right] \xrightarrow{\text{spec}} \{1, 2, 3, 4\}$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

4 / 40

イロト イポト イヨト イヨト 二日

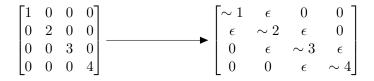
Supergraph lemma

Lemma (BFHHLS 2017)

Let G and H' be two graphs with V(G) = V(H') and $E(G) \subseteq E(H')$. If $A \in S(G)$ has the SSP, then there is a matrix $A' \in S(H')$ such that

- $\operatorname{spec}(A') = \operatorname{spec}(A)$,
- A' has the SSP, and

•
$$||A' - A||$$
 can be chosen arbitrarily small.



SSP will be defined later

イロト イポト イヨト イヨト 二日

BIRS Workshop in 2016

- Barrett, Fallat, Hall, Hogben, Lin, and Shader. *Electron. J. Combin.*, 24:#P2.40, 2017.
- Barrett, Butler, Fallat, Hall, Hogben, Lin, Shader, and Young. J. Combin. Theory Ser. B, 142:276–306, 2020.

Jephian C.-H. Lin (NSYSU)

A long history ...

Strong Arnold Hypothesis

- Arnold 1971 studied matrices depending on parameters.
- Arnold 1972 introduced the transversality of deformation of operators.
- Colin de Verdière 1988 introduced the strong Arnold Hypothesis.
- Colin de Verdière 1990 introduced the parameter μ .

Inverse problems

- Nonnegative IEP: Laffey 1998.
- Sign pattern: DJOvdD 2000, Garnett and Shader 2013.
- IEP-G: Monfared and Shader 2013.

Yet more research works are ongoing!

A long history ...

Strong Arnold Hypothesis

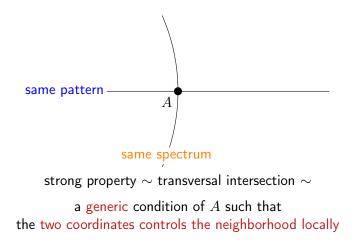
- Arnold 1971 studied matrices depending on parameters.
- Arnold 1972 introduced the transversality of deformation of operators.
- Colin de Verdière 1988 introduced the strong Arnold Hypothesis.
- Colin de Verdière 1990 introduced the parameter μ .

Inverse problems

- Nonnegative IEP: Laffey 1998.
- Sign pattern: DJOvdD 2000, Garnett and Shader 2013.
- IEP-G: Monfared and Shader 2013.

Yet more research works are ongoing!

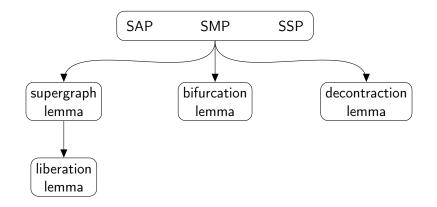
Big picture of the strong property



Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025



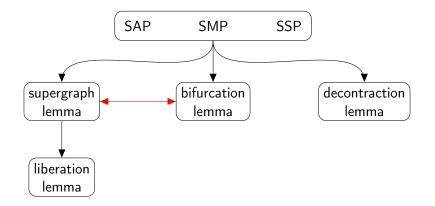
Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 9 / 40

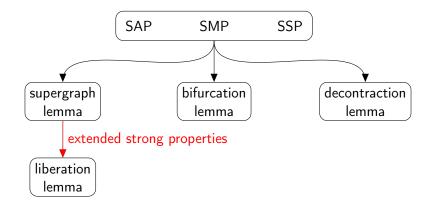
3

(a)



3

(a)



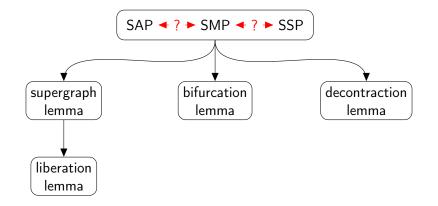
Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 9 / 40

∃ ► < ∃ ►</p>

3



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Supergraph lemma and bifurcation lemma

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025

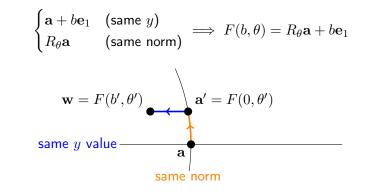
< 4[™] > <

-

3

Inverse function theorem in \mathbb{R}^2

Fix a point $\mathbf{a} \in \mathbb{R}^2$. Combine two perturbations:



 $\frac{dF}{db \theta}$ invertible \implies any nearby w can be written as $\mathbf{w} = F(b', \theta')$

For whatever y value nearby, there is \mathbf{a}' with $\|\mathbf{a}'\| = \|\mathbf{a}\|$.

Jephian C.-H. Lin (NSYSU)

Theorem (Inverse function theorem)

Let $F : U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is invertible, then F is locally invertible around \mathbf{u}_0 .

Theorem (FHLS 2022)

Let $F: U \to W$ be a smooth function. If \dot{F} at a point $\mathbf{u}_0 \in U$ is surjective, then F is locally surjective around \mathbf{u}_0 .

Jephian C.-H. Lin (NSYSU)

Strong properties

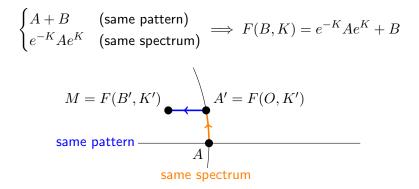
January 8, 2025

12/40

< □ > < 同 > < 回 > < 回 > < 回 >

Inverse function theorem in $\operatorname{Sym}_n(\mathbb{R})$

Fix a point $A \in \mathcal{S}(G)$. Combine two perturbations:



 \dot{F} surjective \implies any nearby M can be written as M = F(B', K')

For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

Jephian C.-H. Lin (NSYSU)

Pattern perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

Define $\mathcal{S}^{\mathrm{cl}}(G)$ as the topological closure of $\mathcal{S}(G)$:

$$\mathcal{S}^{\mathrm{cl}}(G) = \{ A = \left[a_{i,j} \right] \in \mathrm{Sym}_n(\mathbb{R}) : a_{i,j} = 0 \iff \{i,j\} \in E(\overline{G}) \}.$$

Let $A \in \mathcal{S}(G)$. Then $A + B \in \mathcal{S}(G)$ when ||B|| is small enough.

The tangent space of F(B, K) at (O, O) with respect to B is $\mathcal{S}^{cl}(G)$.

Jephian C.-H. Lin (NSYSU)

Isospectral perturbation

$$F(B,K) = e^{-K}Ae^K + B$$

The function e^{K} is a bijection between

{skew-symmetric matrices nearby O} \rightarrow {orthogonal matrices nearby I} for real matrices.

The tangent space of F(B,Q) at (O,O) with respect to Q is $\{-KA + AK : K \in \operatorname{Skew}_n(\mathbb{R})\}.$

Jephian C.-H. Lin (NSYSU)

Definition

Let A be a real symmetric matrix. Then A has the strong spectral property (SSP) if X = O is the only real symmetric matrix that satisfies

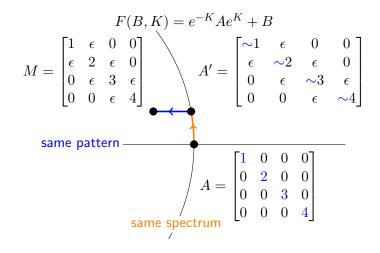
$$A \circ X = I \circ X = [A, X] = O.$$

Let $F(B, K) = e^{-K}Ae^{K} + B$. Then the following are equivalent:

- A has the SSP.
- $\mathfrak{S}^{\mathrm{cl}}(G) + \{-KA + AK : K \in \mathrm{Skew}_n(\mathbb{R})\} = \mathrm{Sym}_n(\mathbb{R}).$
- **③** The derivative \dot{F} is surjective.

イロト 不得 とくき とくき とうき

Illustration of the supergraph lemma



For whatever pattern nearby, there is A' with $\operatorname{spec}(A') = \operatorname{spec}(A)$.

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025

4)Q (~

They must be true, right?

Let $A \in \mathcal{S}(G)$ with the SSP. People *believed* that ...

- For any set of real numbers Λ' nearby spec(A), there is a matrix $A' \in \mathcal{S}(G)$ with spec(A') = Λ' .
- For any refinement \mathbf{m}' of $\mathbf{m}(A)$, there is a matrix $A' \in \mathcal{S}(G)$ with $\mathbf{m}(A') = \mathbf{m}'$.
- For any k > q(A), there is a matrix $A' \in \mathcal{S}(G)$ with q(A') = k.

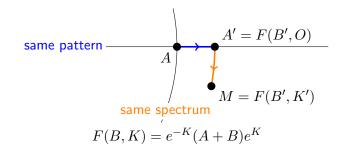
Let $A \in \mathcal{Q}(P)$ be a nilpotent matrix with the nSSP. People *knew* that ...

 For any set of complex numbers Λ' (invariant under conjugation) nearby {0,...,0}, there is a matrix A' ∈ Q(P) with spec(A') = Λ'.

nSSP = the condition of the nilpotent-centralizer method

Lemma (FHLS 2022)

Let $A \in \mathcal{S}(G)$ with the SSP. Then for any set of real numbers Λ' nearby $\operatorname{spec}(A)$, there is a matrix A' with $\operatorname{spec}(A') = \Lambda'$.



Jephian C.-H. Lin (NSYSU)

Strong properties

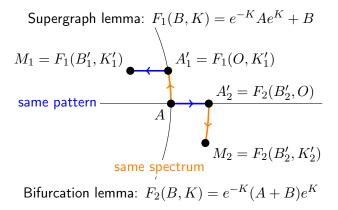
January 8, 2025

- 3

19/40

< □ > < 同 > < 回 > < 回 > < 回 >

Supergraph lemma and bifurcation lemma



Jephian C.-H. Lin (NSYSU)

✓□ → ✓ ⓓ → ✓ ≧ → ✓ ≧ → January 8, 2025

The argument also applies to ...

The universal space $Sym_n(\mathbb{R})$ can also be $Mat_n(\mathbb{R})$, or matrices over other fields.

The spectrum can be replaced by:

- nullity (strong Arnold property),
- ordered multiplicity list (strong multiplicity property),
- orthogonality (strong inner product property),
- nullity and nullity of some principal submatrix (strong nullity interlacing property) ...

The pattern can be replaced by:

- hollow matrices,
- discrete Schrödinger operators (Colin de Verdière parameter)
- weighted normalized Laplacian matrices (Colin de Verdière 1988),
- sign patterns (nilpotent-centralizer method, non-symmetric strong spectral property, similarity-transversality property)....

Jephian C.-H. Lin (NSYSU)

Strong properties

The argument also applies to ...

The universal space $\operatorname{Sym}_n(\mathbb{R})$ can also be $\operatorname{Mat}_n(\mathbb{R})$, or matrices over other fields.

The spectrum can be replaced by:

- nullity (strong Arnold property),
- ordered multiplicity list (strong multiplicity property),
- orthogonality (strong inner product property),
- nullity and nullity of some principal submatrix (strong nullity interlacing property) ...

The pattern can be replaced by:

- hollow matrices,
- discrete Schrödinger operators (Colin de Verdière parameter)
- weighted normalized Laplacian matrices (Colin de Verdière 1988),
- sign patterns (nilpotent-centralizer method, non-symmetric strong spectral property, similarity-transversality property)

Jephian C.-H. Lin (NSYSU)

Strong properties

Supergraph lemma and liberation lemma

Jephian C.-H. Lin (NSYSU)

Strong properties

 → January 8, 2025

< (T) > <

3

Supergraph lemma and liberation lemma

The supergraph lemma allows us to add arbitrary edges.

Lemma (BFHHLS 2017)

Let G be a graph, $A \in S(G)$ with the SSP, and $\beta \subseteq E(\overline{G})$. Then there exists a matrix $A' \in S(G + \beta)$ with the SSP and $\operatorname{spec}(A') = \operatorname{spec}(A)$.

When A does not have the SSP, the liberation lemma allows us to add some specific set of edges.

Lemma (BBFHHLSY 2020, L, Oblak, and Šmigoc 2023)

Let G be a graph, $A \in S(G)$, and β an SSP liberation set of A. Then there exists a matrix $A' \in S(G + \beta)$ with the SSP and $\operatorname{spec}(A') = \operatorname{spec}(A)$.

- 3

(a)

Strong spectral property

Let G be a graph on n vertices and A, X be $n \times n$ real symmetric matrices.

- $X \circ G = O$ means X is zero on those entries corresponding to E(G)and on the diagonal.
- [A, X] = AX XA.

Definition

A matrix $A \in \mathcal{S}(G)$ has the strong spectral property (SSP) if $X \circ G = O$ and [A, X] = O implies X = O.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad X = \begin{bmatrix} 0 & 0 & x & y \\ 0 & 0 & 0 & z \\ x & 0 & 0 & 0 \\ y & z & 0 & 0 \end{bmatrix}$$

Let $A \in \mathcal{S}(K_2 \cup K_2)$.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

Then [A, X] = O.

Extended strong spectral property

Definition

Let G be a spanning subgraph of H. A matrix $A \in \mathcal{S}(G)$ has the strong spectral property with respect to H if $X \circ H = O$ and [A, X] = O implies X = O.

Consider $G = 2K_2$ and $H = P_4$. Then $A \in \mathcal{S}(G)$ has the SSP with respect to H.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 0 & x & y \\ 0 & 0 & 0 & z \\ x & 0 & 0 & 0 \\ y & z & 0 & 0 \end{bmatrix}$$

This property treat A as a matrix in $S^{cl}(H)$, where entries in E(H) can move freely.

Jephian C.-H. Lin (NSYSU)

January 8, 2025 26 / 40

< 67 ▶

Let $A \in \mathcal{S}(G)$.

• A has the SSP = A has the SSP with respect to G.

- A has the SSP with respect to H ⇒
 A has the SSP with respect to H'
 if H is a spanning subgraph of H'
- Any $n \times n$ matrix A has the SSP with respect to K_n .

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Let $A \in \mathcal{S}(G)$.

- A has the SSP = A has the SSP with respect to G.
- A has the SSP with respect to $H \implies$ A has the SSP with respect to H'if H is a spanning subgraph of H'

• Any $n \times n$ matrix A has the SSP with respect to K_n .

27 / 40

(日) (同) (三) (三)

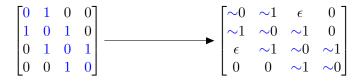
Let $A \in \mathcal{S}(G)$.

- A has the SSP = A has the SSP with respect to G.
- A has the SSP with respect to $H \implies$ A has the SSP with respect to H'if H is a spanning subgraph of H'
- Any $n \times n$ matrix A has the SSP with respect to K_n .

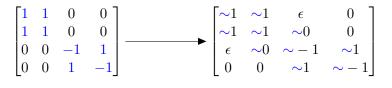
< 47 ▶

Extended supergraph lemma

Supergraph lemma: Free entries in S(G) changes correspondingly for any perturbation in $E(\overline{G})$.



Extended supergraph lemma: Free entries in S(H) changes correspondingly for any perturbation in $E(\overline{H})$.



Jephian C.-H. Lin (NSYSU)

Definition

Let G be a graph and $A \in \mathcal{S}(G)$. A nonempty set of edges $\beta \subseteq E(\overline{G})$ is called an SSP liberation set of A if A has the SSP with respect to $G + \beta'$ for all $\beta' \subset \beta$ with $|\beta| = |\beta| - 1$.

For example, $\beta = \{\{1,3\},\{2,3\}\}$ is an SSP liberation set of

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU)

29 / 40

イロト 不得 とくき とくき とうき

Illustration of the liberation lemma

A has the SSP with respect to $G + \beta'$ for all $\beta' \subset \beta$ with $|\beta| = |\beta| - 1$, so it can be perturbed in many different ways.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{1} \qquad \qquad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{2}$$

Key: Make new nonzero entries one by one.

$$A \xrightarrow{1} \left[\begin{array}{ccccc} \sim 1 & \sim 1 & \epsilon_{1} & 0 \\ \sim 1 & \sim 1 & \sim 0 & 0 \\ \epsilon_{1} & \sim 0 & \sim -1 & \sim 1 \\ 0 & 0 & \sim 1 & \sim -1 \end{array} \right] \xrightarrow{2} \left[\begin{array}{ccccc} \sim 1 & \sim 1 & \sim \epsilon_{1} & 0 \\ \sim 1 & \sim 1 & \sim \epsilon_{2} & 0 \\ \sim \epsilon_{1} & \sim \epsilon_{2} & \sim -1 & \sim 1 \\ 0 & 0 & \sim 1 & \sim -1 \end{array} \right]$$

< 日 > < 同 > < 回 > < 回 > < 回 >

Strong properties hidden in the history

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025 31 / 40

< 47 ▶

3

They all talked about different things ...

- Arnold 1971 studied matrices depending on parameters.
- Arnold 1972 introduced the transversality of deformation of operators.
- Colin de Verdière 1988 introduced the strong Arnold Hypothesis.
- Colin de Verdière 1990 introduced the parameter μ .

	property	domain	notes
[1]	\sim SSP	discrete	$Mat_n(\mathbb{C})$, bifurcation
[2]	\sim SMP	continuous	"The hypothesis of transversal-
		discrete	ity must be accepted without
			proof."
[3]	SAP	continuous	weak Arnold hypothesis
	ightarrow SSP	discrete	weighted normalized Laplacian
			matrices $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$
[4]	SAP	discrete	$\mu(G) \le 3 + \operatorname{cr}(G)$
			$\mu(G) \leq m(X)$ if G can be em-
			bedded into manifold X
			(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Jephian CH. Lin (NSYSU)		Strong prop	perties January 8, 2025 32

/ 40

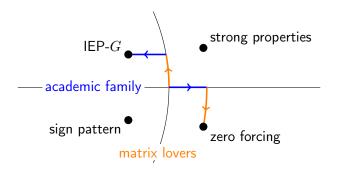
Colin de Verdière. Sur une hypothèse de transversalité d'Arnold. *Comment. Math. Helv.*, 63:184–193, 1988.

Tous ces résultats sont utilisables dans la construction de métriques riemanniennes ou de domaines euclidiens de \mathbb{R}^n dont une partie finie du spectre est prescrit ([C-C], [CV3]). L'ensemble de ces résultats est annoncé dans [CV2].

All these results are applicable to the construction of the Riemannian metrics or the Euclidean domain of \mathbb{R}^n where part of spectrum is prescribed ([C-C], [CV3]). All of these results is announced in [CV2].

33 / 40

Strong advisor property



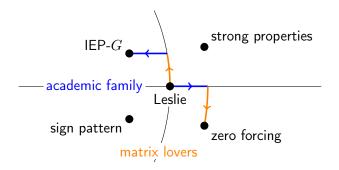
all nearby problems can be resolved through collaboration between students and colleagues

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025

Strong advisor property

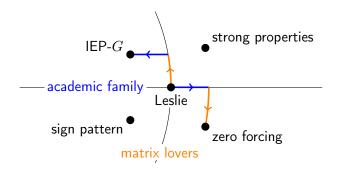


all nearby problems can be resolved through collaboration between students and colleagues

Jephian C.-H. Lin (NSYSU)

Strong properties

January 8, 2025



all nearby problems can be resolved through collaboration between students and colleagues

Thanks!

ILAS2025 in Taiwan

https://ilas2025.tw/

Strong properties

References I

- A. Abiad, B. A. Curtis, M. Flagg, H. T. Hall, J. C.-H. Lin, and B. Shader.

The inverse nullity pair problem and the strong nullity interlacing property.

Linear Algebra Appl., 699:539–568, 2024.

 M. Arav, F. J. Hall, H. van der Holst, Z. Li, A. Mathivanan, J. Pan, H. Xu, and Z. Yang.
 Advances on similarity via transversal intersection of manifolds. *Linear Algebra Appl.* https://doi.org/10.1016/j.laa.2024.05.013.

V. I. Arnold.

On matrices depending on parameters. *Russian Mathematical Surveys*, 26:29–43, 1971.

35 / 40

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References II

V. I. Arnold.

Modes and guasimodes.

Funct. Anal. Appl., 6:94–101, 1972.

W. Barrett, S. Butler, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, B. Shader, and M. Young. The inverse eigenvalue problem of a graph: Multiplicities and minors.

J. Combin. Theory Ser. B, 142:276–306, 2020.

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.

Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph.

Electron. J. Combin., 24:#P2.40, 2017.

- 3

36 / 40

< □ > < 同 > < 回 > < 回 > < 回 >

References III

- D. Boley and G. H. Golub.

A survey of matrix inverse eigenvalue problems. *Inverse Problems*, 3:595–622, 1987.

B. Colbois and Y. Colin de Verdière.

Sur la multiplicité de la première valeur propre d'une surface de riemann à courbure constante.

Comment. Math. Helv., 63:194-208, 1988.

Y. Colin de Verdière.

Spectres de variétés riemanniennes et spectres de graphes. Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1:522–530, 1986.

Y. Colin de Verdière.

Construction de laplaciens dont une partie finie du spectre est donnée. *Ann. Sci. Ec. Norm. Supér.*, 20:599–615, 1987.

References IV

Y. Colin de Verdière.

Sur une hypothèse de transversalité d'Arnold. *Comment. Math. Helv.*, 63:184–193, 1988.

Y. Colin de Verdière.

Sur un nouvel invariant des graphes et un critère de planarité. J. Combin. Theory Ser. B, 50:11–21, 1990.

Y. Colin de Verdière.

On a new graph invariant and a criterion for planarity. In *Graph Structure Theory*, pp. 137–147, American Mathematical Society, Providence, RI, 1993.

B. A. Curtis and B. Shader.

Sign patterns of orthogonal matrices and the strong inner product property.

Linear Algebra Appl., 592:228–259, 2020.

- 3

38 / 40

< □ > < 同 > < 回 > < 回 > < 回 >

References V

- J. H. Drew, C. R. Johnson, D. D. Olesky, and P. van den Driessche. Spectrally arbitrary patterns. *Linear Algebra Appl.*, 308:121–137, 2000.
- S. M. Fallat, H. T. Hall, J. C.-H. Lin, and B. Shader.

The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph.

Linear Algebra Appl., 648:70–87, 2022.

C. Garnett and B. Shader. The Nilpotent-Centralizer method for spectrally arbitrary. *Linear Algebra Appl.*, 438:3836–3850, 2013.

G. M. L. Gladwell. Inverse Problems in Vibration. Springer, Netherlands, 2nd edition, 2005.

- 3

References VI

T. J. Laffey.

Extreme nonnegative matrices. Linear Algebra Appl., 275–276:275–276, 1998.

- J. C.-H. Lin, P. Oblak, and H. Šmigoc. The liberation set in the inverse eigenvalue problem of a graph. *Linear Algebra Appl.*, 675:1–28, 2023.
 - K. H. Monfared and B. Shader. Construction of matrices with a given graph and prescribed interlaced spectral data.

Linear Algebra Appl., 438:4348–4358, 2013.

40 / 40