The liberation set in the inverse eigenvalue problem of a graph

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

June 15, 2024 Workshop on Matrices and Operators, Reno, NV

Joint work with P. Oblak and H. Šmigoc

Jephian C.-H. Lin (NSYSU)

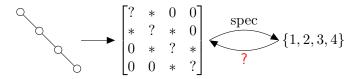
Liberation set in IEP-G

June 15, 2024

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$



IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

June 15, 2024

Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define $\mathcal{S}(G)$ as the family of all real symmetric matrices $A=\left[a_{ij}\right]$ such that

$$a_{ij} \begin{cases} \neq 0 & \text{if } ij \in E(G), i \neq j; \\ = 0 & \text{if } ij \notin E(G), i \neq j; \\ \in \mathbb{R} & \text{if } i = j. \end{cases}$$

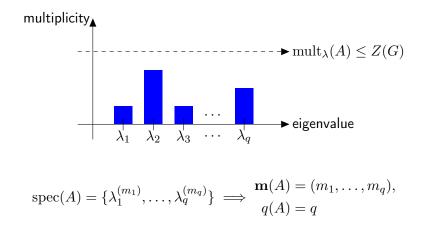
$$= \begin{cases} ? & * & 0 & 0 \\ * & ? & * & 0 \\ 0 & * & ? & * \\ 0 & 0 & * & 2 \end{cases} \xrightarrow{\text{spec}} \{1, 2, 3, 4\}$$

IEP-G: What are the possible spectra of a matrix in $\mathcal{S}(G)$?

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

Ordered multiplicity list



Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

Strong spectral property

Let G be a graph on n vertices and A,X be $n\times n$ real symmetric matrices.

- $X \circ G = O$ means X is zero on those entries corresponding to E(G) and on the diagoal.
- [A, X] = AX XA.

Definition

A matrix $A \in \mathcal{S}(G)$ has the strong spectral property (SSP) if $X \circ G = O$ and [A, X] = O implies X = O.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 0 & x & y \\ 0 & 0 & 0 & z \\ x & 0 & 0 & 0 \\ y & z & 0 & 0 \end{bmatrix}$$

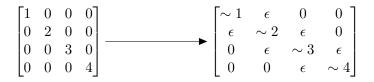
Jephian C.-H. Lin (NSYSU)

Supergraph lemma

Lemma (BFHHLS 2017)

Let G be a spanning subgraph of H'. If $A \in S(G)$ has the SSP, then there is a matrix $A' \in S(H')$ such that

- $\operatorname{spec}(A') = \operatorname{spec}(A)$,
- A' has the SSP, and



Let $A \in \mathcal{S}(K_2 \cup K_2)$.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

Then [A, X] = O.

イロト イヨト イヨト イヨト

Theorem (BBFHHLSY 2020)

Let G be a graph, $A \in \mathcal{S}(G)$, and $\Psi = \Psi_{\text{SSP}}(A)$. Suppose there is a vector $\mathbf{x} \in \text{Col}(\Psi)$ such that the rows of Ψ corresponding to zeros of \mathbf{x} form a linearly independent set. Then there exists a matrix $A' \in \mathcal{S}(G + \text{supp}(\mathbf{x}))$ with the SSP and spec(A') = spec(A).

$$\mathbf{x} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 0 & 2 & -1 & 1 & 0 & 0\\ 0 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 0 & 2 & -1 & 0\\ 0 & 0 & 1 & -1 & 2 & 0 \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU)

Theorem (BBFHHLSY 2020)

Let G be a graph, $A \in \mathcal{S}(G)$, and $\Psi = \Psi_{\text{SSP}}(A)$. Suppose there is a vector $\mathbf{x} \in \text{Col}(\Psi)$ such that the rows of Ψ corresponding to zeros of \mathbf{x} form a linearly independent set. Then there exists a matrix $A' \in \mathcal{S}(G + \text{supp}(\mathbf{x}))$ with the SSP and spec(A') = spec(A).

- Ψ is an $|E(\overline{G})| \times {n \choose 2}$ matrix—usually HUGE.
- It is not clear about how to find such x.
- \bullet The outcome only depends on $\mathrm{supp}(\mathbf{x})$ but not the precise values on $\mathbf{x}.$

Definition

Let G be a spanning subgraph of H. A matrix $A \in \mathcal{S}(G)$ has the strong spectral property with respect to H if $X \circ H = O$ and [A, X] = O implies X = O.

Consider $G = 2K_2$ and $H = P_4$. Then $A \in \mathcal{S}(G)$ has the SSP with respect to H.

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 0 & x & y \\ 0 & 0 & 0 & z \\ x & 0 & 0 & 0 \\ y & z & 0 & 0 \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

Definition

Let G be a graph and $A \in \mathcal{S}(G)$. A nonempty set of edges $\beta \subseteq E(\overline{G})$ is called an SSP liberation set of A if A has the SSP with respect to $G + \beta'$ for all $\beta' \subset \beta$ with $|\beta| = |\beta| - 1$.

For example, $\beta = \{\{1,3\},\{2,3\}\}$ is an SSP liberation set of

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

✓□ → ✓ ⓓ → ✓ 힅 → ✓ 힅 → □ 힅 June 15, 2024

Theorem (L, Oblak, and Šmigoc 2023)

Let G be a graph, $A \in S(G)$, and β an SSP liberation set of A. Then there exists a matrix $A' \in S(G + \beta)$ with the SSP and $\operatorname{spec}(A') = \operatorname{spec}(A)$.

- No need to find the HUGE matrix $\Psi.$
- No need to find x.
- Behind the scene, $\beta = \operatorname{supp}(\mathbf{x})$ for some desired \mathbf{x} .

Jephian C.-H. Lin (NSYSU)

Proposition (BBFHHLSY 2020)

Let A and B be matrices with the SSP. Then $A \oplus B$ has the SSP if and only if AY = YB implies Y = O.

$$A \oplus B = \begin{bmatrix} A \\ B \end{bmatrix} \qquad X = \begin{bmatrix} X_A & Y \\ Y^\top & X_B \end{bmatrix}.$$
$$[A \oplus B, X] = \begin{bmatrix} AX_A - X_AA & AY - YB \\ BY - YA & BX_B - X_BB \end{bmatrix}$$

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

June 15, 2024

(B)

Proposition (L, Oblak, and Šmigoc 2023)

Let $A \in S(G)$ and $B \in S(H)$ be matrices with the SSP. Then $A \oplus B$ has the SSP with respect to $G \cup H + \beta'$ if and only if AY = YB and $Y|_{\beta'} = O$ implies Y = O.

Theorem (L, Oblak, and Šmigoc 2023)

Let G and H graphs, and β' a zero forcing set of $G \Box H$. Then $A \oplus B$ has the SSP with respect to $G \cup H + \beta'$ for any $A \in S(G)$ and $B \in S(H)$ both with the SSP.

Definition

Let G be a graph. A set $F \subseteq V(G)$ is a zero forcing cover of G if F' is a zero forcing set of G for any $F' \subset F$ with |F'| = |F| - 1.

Theorem (L, Oblak, and Šmigoc 2023)

Let G and H be graphs. Suppose $A \in S(G)$ and $B \in S(H)$ have the SSP. If β is a zero forcing cover of $G \Box H$, then β is an SSP liberation set of $A \oplus B$.

イロト イポト イヨト イヨト 二日

 $P_2 \Box P_4$ and a zero forcing cover β $P_2 \dot{\cup} P_4 + \beta$

Let σ, τ be realizable spectra in $\mathcal{S}(P_2)$ and $\mathcal{S}(P_4)$. Then $\sigma \cup \tau$ is realizable in $\mathcal{S}(P_2 \cup P_4 + \beta)$.

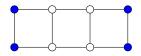
Jephian C.-H. Lin (NSYSU)

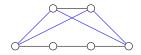
Liberation set in IEP-G

June 15, 2024

< ∃ >

э





 $P_2 \Box P_4$ and a zero forcing cover β

https://ilas2025.tw

Jephian C.-H. Lin (NSYSU)

Liberation set in IEP-G

June 15, 2024

(a)

14/15

References I

 W. Barrett, S. Butler, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, B. Shader, and M. Young.
 The inverse eigenvalue problem of a graph: Multiplicities and minors. *J. Combin. Theory Ser. B*, 142:276–306, 2020.

W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader.

Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph. *Electron. J. Combin.*, 24:#P2.40, 2017.

 J. C.-H. Lin, P. Oblak, and H. Šmigoc.
 The liberation set in the inverse eigenvalue problem of a graph. Linear Algebra Appl., 675:1–28, 2023.