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Abstract

Introduction and some related properties

Exhaustive zero forcing number and sieving process

Summary and a counterexample to a problem on edge spread
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Relation between Matrices and Graphs

G ∶real symmetric matrices → graphs.



−3 3 0
3 −5 2
0 2 −2




G

S(G) = {A ∈ Mn×n(R)∶A = At ,G(A) = G}.
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Minimum Rank

The minimum rank of a graph G is

mr(G) = min{rank(A)∶A ∈ S(G)}.

The maximum nullity of a graph G is

M(G) = max{null(A)∶A ∈ S(G)}.

mr(G) +M(G) = ∣V (G)∣.

The minimum rank problem of a graph G is to determine the
number mr(G) or M(G).
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Related Parameters

The zero forcing process on a graph G is the color-changing
process using the following rules.

Each vertex of G is either black or white initially.
If x is black and y is the only white neighbor of x , then change
the color of y to black.

A set F ⊆ V (G) is called a zero forcing set if with the initial
condition F each vertex of G could be forced into black.

The zero forcing number Z(G) of a graph G is the minimum
size of a zero forcing set.

The path cover number P(G) of a graph G is the minimum
number of vertex disjoint induced paths of G that cover
V (G).
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Example for Three Parameters




? ∗ ∗ ∗
∗ ? 0 0
∗ 0 ? 0
∗ 0 0 ?




G

rank ≥ 2.

2 is achievable.

mr(K1,3) = 2 and M(K1,3) = 4 − 2 = 2.

Z(G) = 2.

P(G) = 2.
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1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




G

rank ≥ 2.

2 is achievable.

mr(K1,3) = 2 and M(K1,3) = 4 − 2 = 2.

Z(G) = 2.

P(G) = 2.

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Example for Three Parameters




1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




G

rank ≥ 2.

2 is achievable.

mr(K1,3) = 2 and M(K1,3) = 4 − 2 = 2.

Z(G) = 2.

P(G) = 2.

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Example for Three Parameters




1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




G

rank ≥ 2.

2 is achievable.

mr(K1,3) = 2 and M(K1,3) = 4 − 2 = 2.

Z(G) = 2.

P(G) = 2.

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Example for Three Parameters




1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




G

rank ≥ 2.

2 is achievable.

mr(K1,3) = 2 and M(K1,3) = 4 − 2 = 2.

Z(G) = 2.

P(G) = 2.

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Basic Properties

For all graph G , M(G) ≤ Z(G).[1]

For all graph G , P(G) ≤ Z(G).[2]

For outerplanar graph G , M(G) ≤ P(G) ≤ Z(G).[12]

M(G) and P(G) are not comparable in general.
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Terminologies for Z(G)

A chronological list record the order of forces.

A chain of a chronological list is a sequence of consecutive
forcing list.

The set of maximal chains forms a path cover.

The inverse chronological list gives another zero forcing set
called reversal.

1

2

3
4

5

6

7

8

9
10

chronological list

1 2

5 6

7 8

6 4

4 3

8 10

10 9

maximal chains

1 2

5 6 4 3

7 8 10 9
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Vertex-sum Operation

The vertex-sum of G1 and G2 at the vertex v is the graph
G1 ⊕v G2 obtained by identifying the vertex v .

If G = G1 ⊕v G2, then

M(G) = max{M(G1)+M(G2)−1,M(G1−v)+M(G2−v)−1}.[4]

v v v

G1 G2 G1 ⊕v G2
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Reduction Formula for P(G)

A vertex v is doubly terminal if v is a one-vertex path in some
optimal path cover.

A vertex v is simply terminal if v is an endpoint of a path in
some optimal path cover and v is not doubly terminal.

The path spread of G on v is

pv(G) = P(G) − P(G − v).

If G = G1 ⊕v G2, then

pv(G) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

−1, if v is simply terminal
of G1 and G2;

min{pv(G1),pv(G2)}, otherwise.[5]
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Reduction Formula for Z(G)

A vertex v is doubly terminal if v is a one-vertex maximal
chain in some optimal chronological list.

A vertex v is simply terminal if v is an endpoint of a maximal
chain in some optimal chronological list and v is not doubly
terminal.

The zero spread of G on v is

zv(G) = Z(G) − Z(G − v).
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Sketch of Proof

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

−1 ≤ zv(G) ≤ 1.
v is doubly terminal⇔ zv = 0.
v is simply terminal⇒ zv = 0.

If v is simply terminal for G1 and G2, then zv(G) = −1,
zv(G1) = zv(G2) = 0.
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Sketch of Proof

If G = G1 ⊕v G2, then

Z(G) ≤ Z(G1) + Z(G2 − v), Z(G) ≤ Z(G1 − v) + Z(G2),

Z(G) ≥ Z(G1) + Z(G2) − 1.

If G = G1 ⊕v G2, then

zv(G) ≤ min{zv(G1), zv(G2)},

zv(G) ≥ zv(G1) + zv(G2) − 1.

zv(G) = −1, zv(G1) = zv(G2) = 0 is the only possibility. This
implies v is simply terminal for G1 and G2.
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Comparison of Reduction Formulae

Denote mv(G) = M(G) −M(G − v),
pv(G) = P(G) − P(G − v), and zv(G) = Z(G) − Z(G − v).

−1 ≤ mv ,pv , rv ≤ 1.

If G = G1 ⊕v G2, they have similar behavior.
mv(G1/G2) −1 0 1

−1 −1 −1 −1
0 −1 −1 0
1 −1 0 1 ,

pv , zv(G1/G2) −1 0 1

−1 −1 −1 −1
0 −1 −1/0 0
1 −1 0 1 .

Hard to apply on induction.
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The PZ condition

Recall that P(G) ≤ Z(G).

A graph G satisfies the PZ condition iff P(G) = Z(G).

PZ condition is not hereditary.

PZ condition does not preserve under vertex-sum operation.
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The Strong PZ condition

A graph G satisfies the strong PZ condition iff each path cover
is the set of maximal chain for some zero forcing process.

Stong PZ condition ⇒ PZ condition.

Strong PZ condition is hereditary.

Strong PZ condition preserves under vertex-sum operation.
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Cactus graphs

A cactus is a graph whose blocks are all K2 or Cn.

A cactus G satisfies the strong PZ condition. Hence we have
P(G) = Z(G).
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Large Z(G) −M(G)

Let Gk be the k 5-sun sequence. Then
P(Gk) = Z(Gk) = 2k + 1 and M(Gk) = k + 1.

Actually, for all 1 ≤ p ≤ q ≤ 2p − 1, there is a graph G such
that M(G) = p and Z(G) = q.

Q: Will the inequality Z(G) ≤ 2M(G) − 1 holds for all G ?

1(1)

1(2)

1(3)

1(4)

1(5)

1(6)

1(7)

1(8)

1(9)

2(1)

2(2)

2(3)

2(4)

2(5)

2(6)

2(7)

2(8)

2(9)

k(1)

k(2)

k(3

k(4)

k(5)

k(6)

k(7)

k(8)

k(9)

k(10)
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Minimum Rank of A Pattern

A sign set is {0,∗,u}. A real number r matchs 0 if r = 0, ∗ if
r ≠ 0, while u if r matchs 0 or ∗.

A pattern matrix Q is a matrix over S .

The minimum rank of a pattern Q is

mr(Q) = min{rankA∶A ≅ Q}.
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Example for Minmum Rank of A Pattern

The pattern

Q = (
∗ 0 0
u ∗ u

)

must have rank at least 2.

The rank 2 is achievable. Hence mr(Q) = 2.
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Operation on S

Define addition “+” and scalar multiplication “×” on S .

+∶S × S → S

+ 0 ∗ u

0 0 ∗ u
∗ ∗ u u
u u u u

×∶ {0,∗} × S → S

× 0 ∗ u

0 0 0 0
∗ 0 ∗ u
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Independence

A sign vector is a tuple with entris on S .

We say a sign vector v ∼ 0 iff v contains no ∗.

A set of sign vectors {v1, v2, . . . , vn} is independent iff

c1v1 + c2v2 +⋯cnvn ∼ 0

implies c1 = c2 = ⋯ = cn = 0.

The rank of a pattern is the maximum number of independent
row sign vectors.
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Independence in different senses

Lemma

Suppose V = {v1, v2, . . . , vn} is a set of sign vectors, and
W = {w1,w2, . . . ,wn} is a set of sign vectors such that wi is
obtained from vi by replacing entries u by 0 or ∗. If V is linearly
independent, then so is W .
Suppose R = {r1, r2, . . . , rn} is a set of real vectors such that each
entry in each vector matches the corresponding entry in elements
of W . If W is linearly independent, then R is linearly independent
as real vectors.

Theorem

If Q is a pattern matrix and U is the set of all pattern matrices
obtained from Q by replacing u by 0 or ∗, then

rank(Q) ≤ min
Q′∈U

{rank(Q ′
)} ≤mr(Q).
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Zero Forcing Number with Banned Edges And Given
Support

Let G be a graph and B is a subset of E(G) called the set of
banned edge or banned set.

The zero forcing process on G banned by B is the coloring
process by following rules.

Each vertex of G is either black or white initially.
If x is a black vertex and y is the only white neighbor of x and
xy ∉ B, then change the color of y to black.

Zero forcing set banned by B F : F can force V (G) banned
by B.

Zero forcing number banned by B Z(G ,B): minimum size of
F .

Zero forcing number banned by B with support W
ZW (G ,B): minimum size of F ⊇ W .

When W and B is empty, ZW (G ,B) = Z(G).
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Natural Relation between Patterns and Bipartites

Q is a given m × n pattern. G = (X ∪Y ,E) is the related
bipartite defined by

X = {a1, a2, . . . , am}, Y = {b1,b2, . . . ,bn}, E = {aibj ∶Qij ≠ 0}.

B = {aibj ∶Qij = u}.

X Y

a1

a2

b1

b2

b3

(
∗ 0 0
u ∗ u

)
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Main Theorem

Theorem

For a given m × n pattern matrix Q, If G = (X ∪Y ,E) is the graph
and B is the set of banned edges defined above, then

rank(Q) + ZY (G ,B) = m + n.

Each initial white vertex represent a sign vector.

The set of initial white vertices is independent iff it will be
forced.




u ∗ 0
∗ u ∗
0 ∗ u




X Y

a1

a2

a3

b1

b2

b3

c1




u
∗
0


+ c2




∗
u
∗


 ∼ 0

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Main Theorem

Theorem

For a given m × n pattern matrix Q, If G = (X ∪Y ,E) is the graph
and B is the set of banned edges defined above, then

rank(Q) + ZY (G ,B) = m + n.

Each initial white vertex represent a sign vector.

The set of initial white vertices is independent iff it will be
forced.




u ∗ 0
∗ u ∗
0 ∗ u




X Y

a1

a2

a3

b1

b2

b3

c1




u
∗
0


+ c2




∗
u
∗


 ∼ 0

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Main Theorem

Theorem

For a given m × n pattern matrix Q, If G = (X ∪Y ,E) is the graph
and B is the set of banned edges defined above, then

rank(Q) + ZY (G ,B) = m + n.

Each initial white vertex represent a sign vector.

The set of initial white vertices is independent iff it will be
forced.




u ∗ 0
∗ u ∗
0 ∗ u




X Y

a1

a2

a3

b1

b2

b3

c1




u
∗
0


+ c2




∗
u
∗


 ∼ 0

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Main Theorem

Theorem

For a given m × n pattern matrix Q, If G = (X ∪Y ,E) is the graph
and B is the set of banned edges defined above, then

rank(Q) + ZY (G ,B) = m + n.

Each initial white vertex represent a sign vector.

The set of initial white vertices is independent iff it will be
forced.




u ∗ 0
∗ u ∗
0 ∗ u




X Y

a1

a2

a3

b1

b2

b3

c1




u
∗
0


+ 0




∗
u
∗


 ∼ 0

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Main Theorem

Theorem

For a given m × n pattern matrix Q, If G = (X ∪Y ,E) is the graph
and B is the set of banned edges defined above, then

rank(Q) + ZY (G ,B) = m + n.

Each initial white vertex represent a sign vector.

The set of initial white vertices is independent iff it will be
forced.




u ∗ 0
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X Y

a1
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a3

b1

b2

b3

∗




u
∗
0


+ ∗




∗
u
∗


+ ∗


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0
∗
u
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


u
u
u
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The Exhaustive Zero Forcing Number

Recall that rank(Q) ≤ minQ′∈U{rank(Q ′
)} ≤mr(Q). The

middle term is called the exhaustive rank of Q.

For a given graph G , there is a corresponding pattern Q
whose diagonal entries are all u.

Let I ⊆ [n] and QI be the pattern replace those u in ii-entry
by ∗ if i ∈ I and 0 if i ∉ I . Then U = {QI ∶ I ⊆ [n]}. Define G̃I

to be the bipartite given by QI .

The inequality become

M(G) ≤ max
I⊆[n]

ZY (G̃I ) − n ≤ ZY (G̃[n],B) − n.

The second term is called the exhaustive zero forcing number
of G . Denote it by Z̃(G). The third term could be proven to
equal Z(G).

Hence M(G) ≤ Z̃(G) ≤ Z(G).
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Hence M(G) ≤ Z̃(G) ≤ Z(G).

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



Example of Exhaustive Zero Forcing Number

For G = P3, the pattern is

Q =

⎛

⎜

⎝

u ∗ 0
∗ u ∗

0 ∗ u

⎞

⎟

⎠

.

For I = {1,3} ⊆ [3], the pattern is
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⎛

⎜

⎝

∗ ∗ 0
∗ 0 ∗

0 ∗ ∗

⎞

⎟

⎠

.

1 = M(P3) ≤ Z̃(P3) ≤ Z(P3) = 1. Hence Z̃(G) = 1.
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Bipartites related to P3

4 3 4 3

3 4 3 4
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Row Rank and Column Rank

Theorem

If G is the bipartite given by a pattern Q, then

ZY (G ,B) = ZX (G ,B).

Row rank: maximum number of rows; Column rank:
maximum number of columns.

Row rank= Column rank !

X Y

a1

a2

b1

b2

b3

X Y

a1

a2

b1

b2

b3
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The n-sun

The n-sun is a graph obtained by adding n leaves to each
vertices of Cn.

In [4], it was shown M(H3) = Z(H3) = 2 and M(Hn) = ⌊
n
2 ⌋,

Z(Hn) = ⌈
n
2 ⌉ for n ≥ 4.

But M(G) = Z̃(Hn) for all n ≥ 3!

The computation could either by discussion on the patterns of
those leaves or by the sieving process given below.

The parameter Z̃(G) is still not sharp for some cactus.
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Example for Sieving Process

If Z(H̃5I ) − 10 = 3 for some I , then 1 ∈ I and 2 ∉ I , a
contradiction.

Z̃(G) = 12 − 10 = 2.

X

Y

12

3

4

5

1
2

3

4

5
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Edge vs Nonedge

Edge: Increase number of neighbor; Increase possible route for
passing.

Nonedge: Decrease number of neighbor; Decrease possible
route for passing.

The BAD guy Banned Edge: Increase number of neighbor;
Decrease possible route for passing.
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Sieving Process

Rewrite

Z̃(G) = max
I⊆[n]

ZY (G̃I ) − n = max{k ∶ k = ZY (G̃I ) − n for some I}.

Let Ik(G) = {I ⊆ [n]∶ZY (G̃I ) − n ≥ k}.

Z̃(G) = max{k ∶ Ik ≠ ∅}.

Each F ⊇ Y with size n + k − 1 is a sieve for Ik(G) to delete
impossible index sets.
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Nonzero-vertex and Zero-vertex

If i ∈ I for all I ∈ Ik(G), then i is called a nonzero-vertex.

If i ∉ I for all I ∈ Ik(G), then i is called a zero-vertex.

Each leaf in H5 is a zero-vertex and nonzero-vertex in I3(H5)

simultaneously. Hence I3(H5) = ∅.

For G = Kn, each vertex is a nonzero-vertex in In−1(G) for
n ≥ 2 while a zero-vertex in I1(G).

For G = K1,t , t ≥ 2, each leaf is a zero-vertex in It−1(G).

For multi-partite G with more than one part and more than
two vertices in each parts, each vertex is a zero-vertex in
In−2(G), n = ∣V (G)∣.

We know Z(Gk) = 2k + 1 and M(Gk) = k + 1. By sieving
process, Z̃(Gk) = k + 1! Here Gk is the k 5-sun sequence.
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Example for Stronger Upper Bound 1

M(G) ≤ Z(G) = 7. Each vertex is a zero-vertex in I7.

If A ∈ S(G) has nullity 7, we may assume

A =

⎛

⎜

⎝

O J J
J O Bt

J B O

⎞

⎟

⎠

.

The matrix
⎛

⎜

⎝

O J O
J O Bt

O B −B −Bt

⎞

⎟

⎠

has the same nullity 7.
−B −Bt

= O. It is impossible when char≠ 2.
M(G) ≤ 6. And actually M(G) = 6.

1 2 3

4

5

6 7

8

9
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Nonzero Elimination Lemma

Theorem

For a graph G , suppose i is a nonzero-vertex in Ik(G). And ηi(G)

denote the set of those graphs obtained from G by the following
rules:

The vertex i should be deleted;

For any neighbors x and y of i , the pair xy should be an edge
if xy ∉ E(G) and could be an edge or a non-edge if xy ∈ E(G).

If the nullity k is achievable by some matrix in S(G), then

k ≤ max{M(H)∶H ∈ ηi(G)}.
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Sketch of Proof

If k is achievable by A ∈ S(G), assume

A =

⎛

⎜

⎝

1 at 0

a Â11 Â12

0 Â21 Â22

⎞

⎟

⎠

.

The matrix Then the matrix

⎛

⎜

⎝

1 0 0

0 B̂11 Â12

0 Â21 Â22

⎞

⎟

⎠

has the same nullity, where B̂11 = Â − aat .

The nullity of A should be less than the maximum nullity of
each possible matrix P.
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Zero Elimination Lemma

Theorem

For a graph G , suppose i is a zero-vertex in Ik(G) and j is a
neighbor of i . Let

N1 = {v ∶ iv ∈ E(G), v ≠ j}, N2 = {v ∶ jv ∈ E(G), iv ∉ E(G), v ≠ i}.

And ηi→j(G) denote the set of those graphs obtained from G by
the following rules:

The vertex i and j should be deleted;

For x ∈ N1 and y ∈ N2, the pair xy should be an edge if
xy ∉ E(G) and could be an edge or a non-edge if xy ∈ E(G);

For x and y in N1, the pair xy could be an edge or a non-edge.

If the nullity k is achievable by some matrix in S(G), then

k ≤ max{M(H)∶H ∈ ηi→j(G)}.
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Example for Stronger Upper Bound 2

Z̃(G) = Z(G) = P(G) = 3.

The vertex 1 is a nonzero-vertex in I3.

G − 1 is the only graph in η1(G).

If 3 is achievable, then 3 ≤ M(G − 1) ≤ 2, a contradiction.
Hence M(G) ≤ 2.
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Example for Stronger Upper Bound 3

Z(G) = 4 and P(G) = 3.

The vertex 1 is a nonzero-vertex in I4.

Let e = 23. Then G − 1 and G − 1 − e are the only two graphs
in η1(G).

If 4 is achievable, then 4 ≤ max{M(G − 1),M(G − 1 − e)} ≤ 3,
a contradiction. Hence M(G) ≤ 3.
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Example for Stronger Upper Bound 4

Z(G) = P(G) = 5.

The vertex 1 is a zero-vertex.

η1→(G) contains only one graph H.

If 5 is achievable, then 5 ≤ M(H) ≤ 4, a contradiction. Hence
M(G) ≤ 4.
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Example for Stronger Upper Bound 5

Z(G) = P(G) = 6.

The vertex 5 is a nonzero-vertex.

List η1(G). P(Gi) ≤ 5 for i = 1,2,3,4. And they are
outerplanar. M(G5) = 5 by reduction formula. M(G4) ≤ 5 by
doing nonzero elimination lemma again on 1.

If 6 is achievable, then 6 ≤ 5, a contradiction. Hence
M(G) ≤ 5.
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List η1(G). P(Gi) ≤ 5 for i = 1,2,3,4. And they are
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Simple Elimination Lemma

Corollary

If i is a vertex of a graph G and j is a neighbor of i , then

M(G) ≤ max{M(H)∶H ∈ ηi(G) ∪ ηi→j(G)}.
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Enhanced Zero Forcing Number on Graph [9]

A looped graph is a graph that allows loops. A vertex x is a
neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph Ĝ is the coloring
process with the following rules:

Each vertex of Ĝ is either black or white initially.
If y is the only white neighbor of x , then change the color of y
to black.

The enhanced zero forcing number Ẑ(G) is the maximum of
Z(Ĝ) over all looped graph Ĝ obtained from G by adding
loops on vertices of G .

M(G) ≤ Ẑ(G) ≤ Z(G).[9]

Theorem

Z̃(G) = Ẑ(G) for all graph G .
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process with the following rules:
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process with the following rules:
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M(G) ≤ Ẑ(G) ≤ Z(G).[9]

Theorem
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Triangle Number on Pattern[3]

A t-triangle of Q is a t × t subpattern that is permutation
similar to a pattern that is upper triangular with all diagonal
entries nonzero.

The triangular number of pattern Q, denote by tri(Q), is the
maximum size of triangle in Q.

mr(Q) ≥ tri(Q).

Theorem

rank(Q) = tri(Q) for all pattern Q.
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Edge Spread Problem

The edge spread of zero forcing number on an edge e is
ze(G) = Z(G) − Z(G − e).

Theorem 2.21 in [7] says that if ze(G) = −1, then for every
optimal zero forcing chain set of G , e is an edge in a chain.

Question 2.22 in [7] ask whether the converse of Theorem
2.21 is true.
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The Counterexample

T is the turtle graph. G = (X ∪Y ,E) is construct from T by

X = {a1, a2, . . . , a14}, Y = {b1,b2, . . . ,b14},

and
E(G) = E1 ∪ E2,

where

E1 = {aiaj ∶ i ≠ j} ∪ {bibj ∶ i ≠ j}, E2 = {aibj ∶ ij ∈ E(T ) or i = j}.

1

2

3

4

5

6

7

8

9

10

11

121314

Chin-Hung Lin Applications of z. f. number to the minimum rank problem



The Counterexample

Each optimal zero forcing set of G is of the forms:

F0 or its automorphism types. F0 = Y ∪ {u, v}, where u could
be a3 or a4 and v could be a6 or a7.
{a3, a4,p} ∪ (Y − y) or {a6, a7,q} ∪ (Y − y) or its
automorphism types, where p could be a6 or a7, q could be a3
or a4, and y is an arbitrarily vertex in Y .

The edge e = a1b1 is used in each optimal zero forcing set.
But Z(G) = Z(G − e) = 16 and so ze(G) = 0 ≠ −1.
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Further Goals for The Minimum Rank Problem

Reduction formula on k-separate.

Reduction Formula for Z̃(G).

“Symmetry” condition was seldom used. There must be some
parameter between Z̃(G) and M(G) and it is sharp for cactus
graphs.

Sym and Not Sym is different! mr(Q) = 3 if Sym while
mr(Q) = 2 if Not Sym.

Q =

⎛

⎜

⎝

0 ∗ ∗

∗ 0 ∗

∗ ∗ 0

⎞

⎟

⎠

.

The proof in [13] of M(Cn) = 2 could be generalized.

mr(G) =mrs(Q(G)) = min{mrs(QI (G))}. So it is still
valuable to consider zero-nonzero symmetric min rank
problem.
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