Sign patterns requiring a unique inertia

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

Oct 2, 2018 Colloquium at National Chiao Tung University, Hsinchu, Taiwan

Sign patterns requiring a unique inertia

Joint work with

Pauline van den Driessche University of Victoria

D. Dale Olesky University of Victoria

Sign pattern

- A sign pattern is a matrix whose entries are in $\{+, -, 0\}$.
- ▶ The qualitative class of a sign pattern $\mathcal{P} = [p_{i,j}]$ is the family of matrices $A = [a_{i,j}]$ such that sign $(a_{i,j}) = p_{i,j}$.

$$Q\left(\begin{bmatrix}+&+&0\\0&-&+\end{bmatrix}\right) \ni \begin{bmatrix}1&2&0\\0&-3&0.5\end{bmatrix}, \begin{bmatrix}5&3&0\\0&-1&\pi\end{bmatrix}, \ldots$$

Require and allow

- Let *P* be a sign pattern.
- Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc.
- ▶ \mathcal{P} requires property *R* if every matrix in $Q(\mathcal{P})$ has property *R*.
- ▶ \mathcal{P} allows property R if at least a matrix in $Q(\mathcal{P})$ has property R.

$$\begin{bmatrix} + & 0 & 0 \\ - & + & 0 \\ 0 & - & + \end{bmatrix}$$
 requires a positive determinant

Require and allow

- Let *P* be a sign pattern.
- Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc.
- ▶ \mathcal{P} requires property *R* if every matrix in $Q(\mathcal{P})$ has property *R*.
- ▶ \mathcal{P} allows property R if at least a matrix in $Q(\mathcal{P})$ has property R.

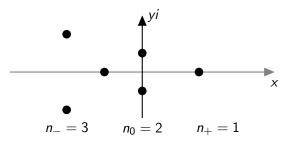
$$\begin{bmatrix} + & 0 & - \\ - & + & 0 \\ 0 & - & + \end{bmatrix}$$
 allows a positive determinant.

Inertia

Let A be a matrix.

- $n_+(A) =$ number of eigenvalues with positive real part.
- $n_{-}(A) =$ number of eigenvalues with negative real part.
- $n_0(A) =$ number of eigenvalues with zero real part.

The inertia of A is the triple $(n_+(A), n_-(A), n_0(A))$.



Question:

Which sign pattern require a unique inertia?

Outlines:

- Motivations from dynamical systems
- ▶ Sign stable patterns (which requires $n_- = n$ and $n_+ = n_0 = 0$)
- Sign patterns requiring a unique inertia

Predator-Prey Model $\frac{dx}{dt} = \alpha x - \beta xy$ $\frac{dy}{dt} = \delta xy - \gamma y$

(pictures from Wikipedia)

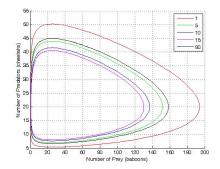


Image: A mathematical states and a mathem

▶ < ≣ ▶

7/35

æ

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

• Equilibria: (0,0), and $(\frac{\gamma}{\delta},\frac{\alpha}{\beta})$

$$\begin{bmatrix} 0 & -\frac{\beta\gamma}{\delta} \\ \frac{\delta\alpha}{\beta} & 0 \end{bmatrix} \longrightarrow \mathcal{P} = \begin{bmatrix} 0 & - \\ + & 0 \end{bmatrix}$$

 $\triangleright \mathcal{P}$ require a unique inertia (0, 0, 2).

ln fact, every matrix in $Q(\mathcal{P})$ has two nonzero pure imaginary

• • = • • = •

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

• Equilibria:
$$(0,0)$$
, and $(\frac{\gamma}{\delta},\frac{\alpha}{\beta})$

Linearization:

$$\begin{bmatrix} 0 & -\frac{\beta\gamma}{\delta} \\ \frac{\delta\alpha}{\beta} & 0 \end{bmatrix} \longrightarrow \mathcal{P} = \begin{bmatrix} 0 & - \\ + & 0 \end{bmatrix}$$

\$\mathcal{P}\$ require a unique inertia (0,0,2).
In fact, every matrix in \$\mathcal{Q}(\mathcal{P})\$ has two nonzero pure imaginary eigenvalues.

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

• Equilibria:
$$(0,0)$$
, and $(\frac{\gamma}{\delta},\frac{\alpha}{\beta})$

Linearization:

$$\begin{bmatrix} 0 & -\frac{\beta\gamma}{\delta} \\ \frac{\delta\alpha}{\beta} & 0 \end{bmatrix} \longrightarrow \mathcal{P} = \begin{bmatrix} 0 & - \\ + & 0 \end{bmatrix}$$

P require a unique inertia (0,0,2).
 In fact, every matrix in *Q*(*P*) has two nonzero pure imaginary eigenvalues.

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

• Equilibria:
$$(0,0)$$
, and $(\frac{\gamma}{\delta},\frac{\alpha}{\beta})$

Linearization:

$$\begin{bmatrix} 0 & -\frac{\beta\gamma}{\delta} \\ \frac{\delta\alpha}{\beta} & 0 \end{bmatrix} \longrightarrow \mathcal{P} = \begin{bmatrix} 0 & - \\ + & 0 \end{bmatrix}$$

- \mathcal{P} require a unique inertia (0, 0, 2).
- ► In fact, every matrix in Q(P) has two nonzero pure imaginary eigenvalues.

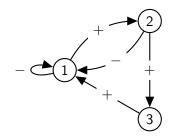
The digraph of a sign pattern

Let $\mathcal{P} = [p_{i,j}]$ be an $n \times n$ sign pattern.

- The digraph $\Gamma(\mathcal{P})$ of \mathcal{P} is a directed graph with
- vertex set $[n] = \{1, \ldots, n\}$ and

• arc set
$$\{(i,j) : p_{i,j} \neq 0\}$$
.

Each arc (i, j) is labeled with the sign p_{i,j}.



 $\begin{bmatrix} - & + & 0 \\ - & 0 & + \\ + & 0 & 0 \end{bmatrix}$

Cycle sign pattern

$$\mathcal{P} = \begin{bmatrix} 0 & p_{1,2} & 0 & \cdots & 0 \\ 0 & 0 & p_{2,3} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & 0 & p_{n-1,n} \\ p_{n,1} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

►
$$s = \prod_{i=1}^{n} p_{i,i+1}$$

- For all A ∈ Q(P), det(xI − A) = xⁿ − sC, where C > 0 is determined by A.
- $\triangleright \mathcal{P}$ has a unique inertia, roughly $(\frac{n}{2}, \frac{n}{2}, 0)$.

For
$$n \geq 3$$
, \mathcal{P} requires $n_+ > 0$.

・四ト・モート ・モト

- A sign pattern is sign semi-stable if it requires $n_+ = 0$.
 - Positive loop [+] is not sign semi-stable.
 - ▶ Positive 2-cycle $\begin{vmatrix} 0 & + \\ + & 0 \end{vmatrix}$ or $\begin{vmatrix} 0 & \\ & 0 \end{vmatrix}$ is not sign semi-stable.
 - Any k-cycle with $k \ge 3$ is not sign semi-stable.
 - If Γ(P) contains one of above as a subgraph, then P is not sign semi-stable.

- A sign pattern is sign semi-stable if it requires $n_+ = 0$.
 - Positive loop [+] is not sign semi-stable.
 - Positive 2-cycle $\begin{bmatrix} 0 & + \\ + & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & \\ & 0 \end{bmatrix}$ is not sign semi-stable.
 - Any k-cycle with $k \ge 3$ is not sign semi-stable.
 - If Γ(P) contains one of above as a subgraph, then P is not sign semi-stable.

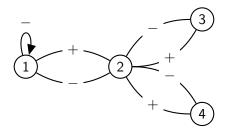
- A sign pattern is sign semi-stable if it requires $n_+ = 0$.
 - Positive loop [+] is not sign semi-stable.
 - ▶ Positive 2-cycle $\begin{bmatrix} 0 & + \\ + & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & \\ & 0 \end{bmatrix}$ is not sign semi-stable.
 - Any k-cycle with $k \ge 3$ is not sign semi-stable.
 - If Γ(P) contains one of above as a subgraph, then P is not sign semi-stable.

- A sign pattern is sign semi-stable if it requires $n_+ = 0$.
 - Positive loop [+] is not sign semi-stable.
 - Positive 2-cycle $\begin{bmatrix} 0 & + \\ + & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & \\ & 0 \end{bmatrix}$ is not sign semi-stable.
 - Any k-cycle with $k \ge 3$ is not sign semi-stable.
 - If Γ(P) contains one of above as a subgraph, then P is not sign semi-stable.

Theorem (Quirk and Ruppert 1965)

An irreducible sign pattern $\mathcal{P} = [p_{i,j}]$ is sign semi-stable if and only if

- ▶ $p_{i,i} \leq 0$ (no positive loop),
- ▶ $p_{i,j}p_{j,i} \leq 0$ (no positive 2-cycle), and
- $\Gamma(\mathcal{P})$ is a doubly directed tree (no k-cycle with $k \geq 3$).



Sign stable

An $n \times n$ sign pattern is sign stable if it requires $n_{-} = n$.

Theorem (Jeffreis, Klee, and van den Driessche 1977)

An irreducible sign pattern $\mathcal{P} = [p_{i,j}]$ is sign stable if and only if

- *P* is sign semi-stable,
- det(P) is not combinatorially zero, and
- there does not exist a nonempty subset β ⊆ [n] such that each diagonal element of P[β] is zero, each row of P[β] contains at least one nonzero entry, and no row of P[β,β] contains exactly one nonzero entry.

Question:

Which sign pattern require a unique inertia?

日本・モン・モン

æ

Necessary condition: signed determinant

If P allows two matrices A₊ and A_− such that det(A₊) > 0 and det(A_−) < 0, then P does not require a unique inertia.</p>

$$\begin{bmatrix} + & + \\ - & - \end{bmatrix} \ni \begin{bmatrix} 1 & 10 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 10 & 1 \\ -1 & -1 \end{bmatrix}$$

Suppose \mathcal{P} is an $n \times n$ sign pattern

- Non-real eigenvalue appears in pair $\lambda, \overline{\lambda}$.
- $\blacktriangleright \ \lambda \overline{\lambda} > 0.$
- ▶ det(A₊) > 0 ⇒ A₊ has even number of negative real eigenvalues ⇒ n₋(A) is even

▶ det(A₋) < 0 ⇒ A₊ has odd number of negative real eigenvalues ⇒ n₋(A) is odd

Necessary condition: signed determinant

If P allows two matrices A₊ and A_− such that det(A₊) > 0 and det(A_−) < 0, then P does not require a unique inertia.</p>

$$\begin{bmatrix} + & + \\ - & - \end{bmatrix} \ni \begin{bmatrix} 1 & 10 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 10 & 1 \\ -1 & -1 \end{bmatrix}$$

Suppose \mathcal{P} is an $n \times n$ sign pattern.

- Non-real eigenvalue appears in pair $\lambda, \overline{\lambda}$.
- $\blacktriangleright \ \lambda \overline{\lambda} > 0.$
- ▶ det(A₊) > 0 ⇒ A₊ has even number of negative real eigenvalues ⇒ n₋(A) is even
- ▶ det(A₋) < 0 ⇒ A₊ has odd number of negative real eigenvalues ⇒ n₋(A) is odd

General form

Let $\mathcal{P} = [p_{i,j}]$ be a sign pattern. Let $x_{i,j}$ be variables for $i, j \in [n]$. The general form of \mathcal{P} is a variable matrix X with

$$(X)_{i,j} = \begin{cases} x_{i,j} & \text{if } p_{i,j} = +; \\ -x_{i,j} & \text{if } p_{i,j} = -; \\ 0 & \text{if } p_{i,j} = 0. \end{cases}$$

$$\mathcal{P} = \begin{bmatrix} + & + \\ - & - \end{bmatrix} \qquad X = \begin{bmatrix} x_{1,1} & x_{1,2} \\ -x_{2,1} & -x_{2,2} \end{bmatrix}$$

Write det $(zI - X) = S_0 z^n - S_1 z^{n-1} + S_2 z^{n-2} + \dots + (-1)^n S_n$. Then each S_k is a multivariate polynomial in $x_{i,j}$'s.

Sign of a polynomial

- Let p be a polynomial.
- p can be expanded into a linear combination of non-repeated monomials.

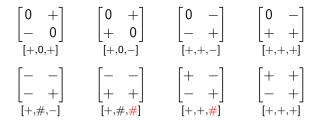
$$\operatorname{sign}(p) = \begin{cases} 0 & \text{if all coefficients} = 0; \\ + & \text{if all nonzero coefficients} > 0 \text{ and } \operatorname{sign}(p) \neq 0; \\ - & \text{if all nonzero coefficients} < 0 \text{ and } \operatorname{sign}(p) \neq 0; \\ \# & \text{otherwise.} \end{cases}$$

-∢ ≣ ▶

Minor sequence

Let X be the general form a sign pattern P. The minor sequence of P is s₀, s₁,..., s_n, where s_k = sign(S_k).

Theorem (JL, Olesky, and van den Driessche 2018) If $s_n = \#$, then \mathcal{P} does not require a unique inertia. When \mathcal{P} is a 2×2 sign pattern, \mathcal{P} require a unique inertia if and only if $s_2 \neq \#$.



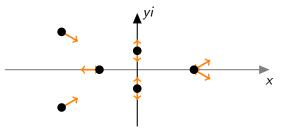
Theorem (JL, Olesky, and van den Driessche 2018) If $s_{k_0} = \#$ and $s_k = 0$ for all $k > k_0$, then \mathcal{P} does not require a unique inertia. Equivalently, if \mathcal{P} require a unique inertia, then it requires a fixed $n_z = n - k_0$.

• Here $n_z(A)$ be the number of zero eigenvalues of A.

Equivalence conditions

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a sign pattern. The following are equivalent:

- *P* requires a unique inertia.
- \triangleright \mathcal{P} requires a fixed n_0 .
- *P* requires a fixed n_z and a fixed number of nonzero pure imaginary eigenvalues.



Number of nonzero pure imaginary roots

Substitute *z* by *ti* (with $t \neq 0$):

$$p(z) = x^5 + x^4 + 6x^3 + 2x^2 + 9x - 3$$

= $(t^4 - 6t^2 + 9)ti + (t^4 - 2t^2 - 3)$

odd part =
$$x^2 - 6x + 9$$

even part = $x^2 - 2x - 3$

of nonzero pure imaginary roots

 $= 2 \cdot \#$ of common positive roots of the odd and the even parts

For det
$$(zI - X)$$
, even part : $S_0, -S_2, S_4, \ldots$
even part : $S_1, -S_3, S_5, \ldots$

Number of nonzero pure imaginary roots

Substitute z by ti (with $t \neq 0$):

$$p(z) = x^5 + x^4 + 6x^3 + 2x^2 + 9x - 3$$

= $(t^4 - 6t^2 + 9)ti + (t^4 - 2t^2 - 3)$

odd part =
$$x^2 - 6x + 9$$

even part = $x^2 - 2x - 3$

of nonzero pure imaginary roots

 $= 2 \cdot \#$ of common positive roots of the odd and the even parts

For det
$$(zI - X)$$
, even part : $S_0, -S_2, S_4, \dots$
even part : $S_1, -S_3, S_5, \dots$

Descartes' rule of signs

Theorem (Descartes' rule of signs)

Suppose $p(x) \neq 0$ is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p(x) has t - 2k positive roots for some $k \geq 0$.

For example

- > $x^2 6x + 9$ has 2 or 0 positive roots, and
- ▶ $x^2 + 0x 4$ has 1 positive root.

[Key: No sign changes, no positive roots!

伺 ト イヨ ト イヨ ト

Descartes' rule of signs

Theorem (Descartes' rule of signs)

Suppose $p(x) \neq 0$ is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p(x) has t - 2k positive roots for some $k \geq 0$.

For example

>
$$x^2 - 6x + 9$$
 has 2 or 0 positive roots, and

▶
$$x^2 + 0x - 4$$
 has 1 positive root.

[Key: No sign changes, no positive roots!]

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

Let \mathcal{P} be an $n \times n$ sign pattern with minor sequence s_0, s_1, \ldots, s_n . If either

- the sequence $s_0, -s_2, s_4, -s_6, ...,$ or
- the sequence $s_1, -s_3, s_5, -s_7, ...$

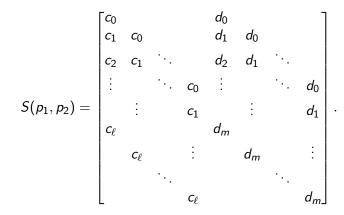
contains no #, contains at least one nonzero term, and has no sign changes, then \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

$$\begin{bmatrix} - & - \\ - & + \end{bmatrix}$$
 has minor sequence $[+, \#, -]$
even part : $S_0x - S_2 = 0$
odd part : $S_1 = 0$ \implies no common positive roots

< ∃ >

Resultant

Let $p_1(x) = \sum_{k=0}^{\ell} c_k x^{\ell-k}$ and $p_2(x) = \sum_{k=0}^{m} d_k x^{m-k}$. The Sylvester matrix of p_1 and p_2 is an $(m + \ell) \times (m + \ell)$ matrix



The resultant of p_1 and p_2 is

$$\mathsf{Res}(p_1,p_2) = \mathsf{det}(S(p_1,p_2)).$$

Theorem $\operatorname{Res}(p_1, p_2) = 0$ if and only if p_1 and p_2 have a common factor.

Suppose \mathcal{P} is a sign pattern with general form X.

► Res(P) = Res(even part, odd part) with the two parts from det(zl - X).

Lemma (JL, Olesky, and van den Driessche 2018)

Let \mathcal{P} be an $n \times n$ sign pattern. If sign $(\text{Res}(\mathcal{P})) \in \{+, -\}$, then \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

The resultant of p_1 and p_2 is

$$\mathsf{Res}(p_1,p_2) = \mathsf{det}(S(p_1,p_2)).$$

Theorem

 $\operatorname{Res}(p_1, p_2) = 0$ if and only if p_1 and p_2 have a common factor.

Suppose \mathcal{P} is a sign pattern with general form X.

► Res(P) = Res(even part, odd part) with the two parts from det(zl - X).

Lemma (JL, Olesky, and van den Driessche 2018)

Let \mathcal{P} be an $n \times n$ sign pattern. If sign $(\text{Res}(\mathcal{P})) \in \{+, -\}$, then \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

The resultant of p_1 and p_2 is

$$\mathsf{Res}(p_1,p_2) = \mathsf{det}(S(p_1,p_2)).$$

Theorem

 $\operatorname{Res}(p_1, p_2) = 0$ if and only if p_1 and p_2 have a common factor.

Suppose \mathcal{P} is a sign pattern with general form X.

► Res(P) = Res(even part, odd part) with the two parts from det(zl - X).

Lemma (JL, Olesky, and van den Driessche 2018)

Let \mathcal{P} be an $n \times n$ sign pattern. If sign(Res(\mathcal{P})) $\in \{+, -\}$, then \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

• • • • • • • • •

$$\begin{bmatrix} 0 & x_{1,2} & 0 \\ -x_{2,1} & 0 & -x_{2,3} \\ 0 & -x_{3,2} & x_{3,3} \end{bmatrix},$$

$$S_0(\mathcal{P}) = 1 \qquad S_2(\mathcal{P}) = x_{1,2}x_{2,1} - x_{2,3}x_{3,2}$$

$$S_1(\mathcal{P}) = x_{3,3} \qquad S_3(\mathcal{P}) = x_{1,2}x_{2,1}x_{3,3}$$

$$\operatorname{Res}(\mathcal{P}) = x_{3,3}(x_{1,2}x_{2,1} - x_{2,3}x_{3,2}) - x_{1,2}x_{2,1}x_{3,3}$$

$$= x_{3,3}x_{1,2}x_{2,1} - x_{3,3}x_{2,3}x_{3,2} - x_{1,2}x_{2,1}x_{3,3}$$

$$= x_{3,3}x_{2,3}x_{3,2}.$$

 $sign(Res(\mathcal{P})) = + \implies$ never has common positive roots So, \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

《口》《聞》《臣》《臣》 [臣]

Embedded \mathcal{T}_2

$$\begin{aligned} \mathcal{T}_2 &= \begin{bmatrix} + & + \\ - & - \end{bmatrix} \text{ allows two inertias } (2,0,0) \text{ and } (0,2,0) \\ \begin{bmatrix} + & + & 0 \\ - & - & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ allows two inertias } (2,0,1) \text{ and } (0,2,1) \end{aligned}$$

Lemma (JL, Olesky, and van den Driessche 2018) If \mathcal{P} is a 3×3 sign pattern with \mathcal{T}_2 (or \mathcal{T}_2^{\top}) embedded in \mathcal{P} as a principal subpattern, then \mathcal{P} does not require a unique inertia.

$$\begin{bmatrix} 0 & 0 & + \\ - & + & + \\ 0 & - & - \end{bmatrix}$$
 has minor sequence $[+, \#, \#, +]$

$$\mathcal{P} = \begin{bmatrix} - & - & + \\ 0 & + & + \\ - & 0 & 0 \\ [+,\#,\#,+] \end{bmatrix} \qquad X = \begin{bmatrix} -x_{1,1} & -x_{1,2} & x_{1,3} \\ 0 & x_{2,2} & x_{2,3} \\ -x_{3,1} & 0 & 0 \end{bmatrix}$$

odd part :
$$S_0 x - S_2 = 0$$

even part : $S_1 x - S_3 = 0$

algebra shows they don't have common positive roots [but computation too long to show here]

▶ < ≣ ▶

If you really want to see...

Since $s_3 = +$ and $S_1x - S_3 = 0$ has a possitive root,

$$\epsilon := -x_{1,1} + x_{2,2} = S_1 > 0.$$

Substitute $x_{2,2}$ by $x_{1,1} + \epsilon$ with $\epsilon > 0$. Then the resultant becomes

$$\begin{aligned} (-x_{1,1} + x_{1,1} + \epsilon)(-x_{1,1}(x_{1,1} + \epsilon) + x_{1,3}x_{3,1}) - (x_{1,2}x_{2,3}x_{3,1} + x_{1,3}(x_{1,1} + \epsilon) \\ &= -\epsilon x_{1,1}(x_{1,1} + \epsilon) + \epsilon x_{1,3}x_{3,1} - x_{1,2}x_{2,3}x_{3,1} - x_{1,1}x_{1,3}x_{3,1} - \epsilon x_{1,3}x_{3,1} \\ &= -\epsilon x_{1,1}(x_{1,1} + \epsilon) - x_{1,2}x_{2,3}x_{3,1} - x_{1,1}x_{1,3}x_{3,1} < 0. \end{aligned}$$

Exceptional, not exceptional

A 3 \times 3 sign pattern ${\cal P}$ is in ${\cal E}$ if its minor sequence is [+,#,#,+] or [+,#,#,-]

3 imes 3 sign patterns not in ${\cal E}$

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a 3 × 3 irreducible sign pattern that is not in \mathcal{E} . Then \mathcal{P} requires a unique inertia if and only if

1.
$$s_{k_0} \in \{+, -\}$$
 and $s_k = 0$ for all $k > k_0$ (fixed n_z), and

2. At least one of the following holds: (fixed $n_0 - n_z = 0$)

2.1 $s_2 = -.$ (no sign changes in even part) 2.2 $s_1, s_3 \in \{+, -, 0\}$ and $s_1 \neq s_3$. (no sign changes in odd part) 2.3 Res(\mathcal{P}) has a fixed sign.

 3×3 sign patterns in ${\cal E}$

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a 3×3 sign pattern in \mathcal{E} . Then \mathcal{P} requires a unique inertia if and only if \mathcal{T}_2 is not embedded in \mathcal{P} as a principal subpattern.

Enumerations

All 2 \times 2 and 3 \times 3 sign patterns are characterized.

 2×2 :

- 8 sign patterns in total
- ▶ 6 UI; 2 not UI

 3×3 :

	UI	not UI	subtotal
not in ${\cal E}$	51	118	169
in ${\cal E}$	12	6	18
subtotal	63	124	187

э

母 🕨 🔸 물 🕨 🗸 물 🕨

Enumerations

All 2 \times 2 and 3 \times 3 sign patterns are characterized.

 2×2 :

- 8 sign patterns in total
- ▶ 6 UI; 2 not UI

 3×3 :

		UI	not UI	subtotal	
not in in \mathcal{E}	\mathcal{E}	51	118	169	Thank you!
in ${\cal E}$		12	6	18	Thank you:
subtota	al	63	124	187	-

- ∢ ≣ →

References I

- D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, 4th edition, 2015.
- C. Jeffries, V. Klee, and P. van den Driessche.
 When is a matrix sign stable?
 Canad. J. Math., 29:315–326, 1977.
- J. C.-H. Lin, D. D. Olesky, and P. van den Driessche. Sign patterns requiring a unique inertia. *Linear Algebra Appl.*, 546:67–85, 2018.

References II

J. Quirk and R. Ruppert. Qualitative economics and the stability of equilibrium. *Rev. Economic Studies*, 32:311–326, 1965.