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The minimum rank problem

I The minimum rank problem refers to finding the minimum
rank or the maximum nullity of matrices under certain
restrictions.

I The restrictions can be the zero-nonzero pattern, conditions
on the inertia, or other properties of a matrix.

I The minimum rank problem is motivated by
I inverse eigenvalue problem — Matrix theory, Engineering
I Colin de Verdière parameter, orthogonal representation —

Graph theory
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Example of the maximum nullity

∗ =nonzero

0 ∗ ∗ 0

∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0







Any matrix following this pattern is always nonsingular, meaning
the maximum nullity of this pattern is 0.
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Zero forcing I

Thinking the matrix as a linear system, if a variable is known as
zero, then color it blue.

0 ∗ ∗ 0

∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0







x1
x2
x3
x4







0

0

0

0







=

1

2
3
4

x1 x2 x3 x4

The only vector in the right kernel is (0, 0, 0, 0), so the maximum
nullity is 0.
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Zero forcing II

Color x4 in advance. The remaining process is the same.

0 ∗ ∗ 0

∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ ∗







1

2
3
4

x1 x2 x3 x4

The first three columns are always independent, so the the
maximum nullity is at most 1.

maximum nullity ≤ # initial blue variables
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Zero forcing III

∗ 0 0 ∗
∗ ∗ 0 0

∗ ∗ ∗ 0
∗ ∗ ∗ ∗







4

1

2
3

x3 x2 x1 x4

Zero forcing is a process of finding the largest lower triangular
pattern.

maximum nullity ≤ # initial blue variables
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New upper bound
odd cycle zero forcing Zoc
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The minimum rank of loop graphs

The maximum nullity M(G) of a loop graph G is the maximum
nullity over real symmetric matrices following its zero-nonzero
pattern.

0 ∗ ∗ 0

∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ ∗







1

2

3 4

The zero forcing number Z (G) is the minimum number of initial
blue vertices required to make all vertices blue through the
color-change rule:

For a vertex x , if y is its only white neighbor, then y turns blue.
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∗ ∗ ∗ ∗
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





1

2

3 44

The zero forcing number Z (G) is the minimum number of initial
blue vertices required to make all vertices blue through the
color-change rule:

For a vertex x , if y is its only white neighbor, then y turns blue.
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2
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M(G) and Z (G)

Theorem (Hogben ’10)

For any loop graph G, M(G) ≤ Z (G).

In general, Z (G) gives a nice bound; however, for loopless odd
cycles C0

2k+1, 0 = M(G) < Z (G) = 1.

det




0 a 0 0 f
a 0 b 0 0
0 b 0 c 0
0 0 c 0 d
f 0 0 d 0




= 2abcdf 6= 0, if a, b, c , d , f 6= 0.
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Main idea: eliminate the odd cycles

The odd cycle zero forcing number Zoc(G) of a loop graph G is
the minimum number of initial blue vertices required to make all
vertices blue by:

I For a vertex x , if y is its only white neighbor, then y turns
blue.

I If the subgraph induced by the white vertices contains a
component, which is a loopless odd cycle, then all vertices in
this component turn blue.

Theorem (L ’16)

For any loop graph G, M(G) ≤ Zoc(G) ≤ Z (G).
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Odd cycle zero forcing

∗ 0 0 0 0

∗ 0 a b 0

0 a 0 c 0

0 b c 0 0

∗ ∗ 0 0 ∗







1

3
4

5

2

x2 x3 x4 x5 x1

1 2 3

4

5
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Remarks on Zoc

Corollary (L ’16)

For any loop configuration G of a complete graph or a cycle,
M(G) = Zoc(G).

I Zoc(G) fills in the gaps for many loop graphs that contains
loopless odd cycles as induced subgraphs.

I Z (G)− Zoc(G) can be arbitrarily large.

k copies

Z (G) = k + 1

Zoc(G) = 1
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The minimum rank of simple graphs
The maximum nullity M(G ) of a simple graph G is the maximum
nullity over real symmetric matrices following its zero-nonzero
pattern, where diagonal entries are free.

? ∗ ∗ 0

∗ ? ∗ 0

∗ ∗ ? ∗
0 0 ∗ ?







1

2

3 4

The zero forcing number Z (G ) is the minimum number of initial
blue vertices required to make all vertices blue through the
color-change rule:

For a blue vertex x , if y is its only white neighbor,
then y turns blue.
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Inverse eigenvalue problem

I Let S(G ) be the family of real symmetric matrices that follow
the zero-nonzero pattern of G . (Diagonal entries are free.)

I The inverse eigenvalue problem of a graph (IEPG) asks what
are the possible spectra of matrices in S(G ).

I The maximum nullity M(G ) is an upper bound for all
multiplicity.

I M(G ) ≤ Z (G ) [AIM ’08]

I E.g., for path graphs Pn, M(Pn) = 1, so all matrices in S(G )
have only simple eigenvalues.
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Loop configurations

A loop configuration of a simple graph G is a loop graph G
obtained from G by designating each vertex as having or not
having a loop.

1 1 1 1 1

2 2 2 2 2

simple graph loop configurations

M(G ) = maxGM(G), taking maximum over all loop configurations
G.
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Relations of all mentioned parameters

Z (G )

Ẑ (G )

Ẑoc(G ) Z (G)

M(G ) Zoc(G)

M(G)

Ẑ (G )

Ẑoc(G ) Z (G)

Zoc(G)
maxG
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Ẑoc(G ) Z (G)
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Z (G)

Zoc(G)

Ẑ (G )
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maxG

maxG

enhanced
zero forcing number

enhanced odd cycle
zero forcing number
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Example: K3,3,3

1

2

3

4 5 6

7

8

9

Ẑoc(K3,3,3) = 6 < Ẑ (K3,3,3) = 7
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9

4 5 6

7

8

9
1,2,3 have loops

others are unknown

1

2

3

Ẑoc(K3,3,3) = 6 < Ẑ (K3,3,3) = 7
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Example: K3,3,3

1

2

3

4 5 6

7

8

9

2

3

5 6

8

9
1,4,7 have no loops
others are unknown

Ẑoc(K3,3,3) = 6 < Ẑ (K3,3,3) = 7
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Remarks on new parameters

M(G ) ≤ Ẑoc(G ) ≤ Ẑ (G ) ≤ Z (G )

I The enhanced odd cycle zero forcing number Ẑoc(G ) inserts a
new parameter between M(G ) and Ẑ (G ).

I M(K3,3,3) = 6= Ẑoc(K3,3,3) < Ẑ (K3,3,3) = 7

I M(C0
2k+1) = 0= Zoc(C0

2k+1) < Z (C0
2k+1) = 1
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C0
3 vs K3,3,3

1

2

3

4 5 6

7

8

9

Ẑoc(K3,3,3) = 6 < Ẑ (K3,3,3) = 7
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Graph & Matrix blowups




0 1 0
1 4 7
0 7 0







0 0 1 1 1 0
0 0 1 1 1 0
1 1 4 4 4 7
1 1 4 4 4 7
1 1 4 4 4 7
0 0 7 7 7 0




loop graph G simple graph H

A ∈ SF (G) A′ ∈ SF (H)

(2, 3, 1)-blowup

(2, 3, 1)-blowup

S(G) S(H)
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Simple graph ←− loop graph

I The notation H
(t1,...,tn)←−−−−− G means H is the simple graph

obtained from the loop graph G by (t1, . . . , tn)-blowup.

I E.g., K3,3,3
(3,3,3)←−−−− C0

3.

Theorem (L ’16)

Suppose H
(t1,...,tn)←−−−−− G with ti ≥ 3 and M(G) = Zoc(G). Then

M(H) = Ẑoc(H) = Zoc(G) + `, where ` =
∑n

i=1(ti − 1).

E.g., since M(C0
3) = Zoc(C0

3) = 0,

M(K3,3,3) = Ẑoc(K3,3,3) = 0 + (2 + 2 + 2) = 6.
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Sufficient condition for the Strong Arnold
Property

SAP zero forcing ZSAP
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The Strong Arnold Property

I A real symmetric matrix A is said to have the Strong Arnold
Property (SAP) if the only real symmetric matrix X that
satisfies 




A ◦ X = O
I ◦ X = O
AX = O

is X = O. Here ◦ is the Hadamard (entrywise) product.

I If A is nonsingular, then A has the SAP.

I If A ∈ S(Kn), then A has the SAP.
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Example of not having the SAP

Let

A =




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



,X =




0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1
0 1 −1 0 0
0 −1 1 0 0



.

Then A ◦ X = I ◦ X = O and AX = O, so A does not have the
SAP.
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Motivation: Colin de Verdière parameter µ(G )

I For a simple graph G , the Colin de Verdière parameter µ(G )
[Colin de Verdière ’90] is the maximum nullity over matrices A
such that

I A ∈ S(G ) and all off-diagonal entries are zero or negative.
(Called generalized Laplacian.)

I A has exactly one negative eigenvalue (counting multiplicity).
I A has the SAP.

I Characterizations:
I µ(G ) ≤ 1 iff G is a disjoint union of paths. (No K3 minor)
I µ(G ) ≤ 2 iff G is outer planar. (No K4,K2,3 minor)
I µ(G ) ≤ 3 iff G is planar. (No K5,K3,3 minor)

I It is conjectured that µ(G ) + 1 ≥ χ(G ).
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Other Colin de Verdière type parameters

I ξ(G ) = max{null(A) : A ∈ S(G ),A has the SAP}
I ν(G ) = max{null(A) : A ∈ S(G ),A is PSD,A has the SAP}
I For Colin de Verdière type parameters β ∈ {µ, ν, ξ}, they are

all minor monotone. That is, β(H) ≤ β(G ) if H is a minor of
G . [C ’90, C ’98, BFH ’05]

I By graph minor theorem, β(G ) ≤ k if and only if G does not
contain a family of finite graphs as minors. (Called forbidden
minors.)
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Colin de Verdière type parameters

M(G )

Z (G )

ξ(G )

µ(G )

M+(G )

ν(G )

S(G )

S(G ),psd

S(G ),psd,SAP

S(G )
SAP

gen Laplacian
1 neg eigen
SAP

Mµ(G )
gen Laplacian
1 neg eigen
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The meaning of Strong Arnold Property

A real symmetric matrix A is said to have the Strong Arnold
Property if X = O is the only symmetric matrix that satisfies

A ◦ X = I ◦ X = O︸ ︷︷ ︸
normal space of

the pattern manifold

and AX = O︸ ︷︷ ︸
normal space of
the rank manifold

.

I Pattern manifold: symmetric matrices with the same
zero-nonzero pattern as A.

I Rank manifold: symmetric matrices with the same rank as A.

Two manifolds intersect transversally if the intersection of their
normal spaces is {0}. Equivalently, A has the SAP means the
pattern manifold and the rank manifold of A intersect transverally.
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Transversality: perturbation allowed

transversal not transversal

If a matrix A has the SAP, then A can be perturbed slightly yet
maintain the same rank.
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How to verify the SAP?

I Let G be a graph and A ∈ S(G ) with vj its j-th column
vector. Let m = |E (G )|.

I The SAP matrix Ψ of A is an n2 ×m matrix with
I row indexed by (i , j) with i , j ∈ {1, . . . , n}
I column indexed by {i , j} ∈ E (G )
I the {i , j}-th column of Ψ is

(0, . . . , 0, vj
i-th block

, 0, . . . , 0, vi
j-th block

, 0, . . . , 0)>

I A has the SAP if and only if Ψ is full-rank.
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Example of the SAP matrix: forcing triples

I Recall the SAP: A ◦ X = I ◦ X = AX = O =⇒ X = O.

I Let G = P4 and A ∈ S(G ) with vj its j-th column vector.

AX =




d1 a1 0 0
a1 d2 a2 0
0 a2 d3 a3
0 0 a3 d4







0 0 x{1,3} x{1,4}
0 0 0 x{2,4}

x{1,3} 0 0 0
x{1,4} x{2,4} 0 0


 = O.

I This is equivalent to




v3 v4 0
0 0 v4
v1 0 0
0 v1 v2






x{1,3}
x{1,4}
x{2,4}


 = Ψ



x{1,3}
x{1,4}
x{2,4}


 = 0.
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Zero forcing =⇒ full-rank

v3 v4 0

0 0 v4

v1 0 0

0 v1 v2







1

2

3

4

x{1,3} x{1,4} x{2,4}

Idea: If the zero forcing number is zero, then every matrix has the
SAP.
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SAP zero forcing

I In an SAP zero forcing game, every non-edge has color either
blue or white.

I If BE is the set of blue non-edges, the local game on a given
vertex k is a conventional zero forcing game on G , with blue
vertices

φk(G ,BE ) := NG [k] ∪ N〈BE 〉(k) .

The local game is denoted by φZ (G ,BE , k).

1

2 3

4

SAP zero forcing

φZ (G ,BE , k)

k = 1, BE = {{1, 4}}

1

2 3

41

2

4

conventional zero forcing
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SAP zero forcing

I Color change rule-ZSAP:
I Forcing triple (k : i → j): If i → j in φZ (G ,BE , k), then {j , k}

turns blue.
I Odd cycle rule (i → C ): Let GW be the graph whose edges are

the white non-edges. If GW [NG (i)] contains a component that
is an odd cycle C . Then E (C ) turns blue.

I ZSAP(G ) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(1 : 2→ 3)

φZ (G ,BE , k)

k = 1

1

2 3

41

2

4

2→ 3
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1

2 3

4
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φZ (G ,BE , k)

k = 4

1

2 3

41

3

4

3→ 2
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 2

1 2

3

4

5

1 2

3

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 4

1 2

3

4

5

3

4

5

2

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 5

1 2

3

4

5

2 4

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0
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local game

k = 3

1 2
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4
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2

3

4

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
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Theorem (L ’16)

If ZSAP(G ) = 0, then every matrix A ∈ S(G ) has the SAP.
Therefore, ξ(G ) = M(G ), M+(G ) = ν(G ), and Mµ(G ) = µ(G ).
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Computational results

How many graphs have the property ZSAP(G ) = 0? The table
shows for fixed n the proportion of graphs with ZSAP(G ) = 0 in all
connected graphs. (Isomorphic graphs count only once.)

n ZSAP = 0

1 1.0
2 1.0
3 1.0
4 1.0
5 0.86
6 0.79
7 0.74
8 0.73
9 0.76

10 0.79
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Applications

Theorem (L ’16)

For every graph G, M(G )− ξ(G ) ≤ Zvc(G ).

Theorem (L ’16)

The value of ξ(G ) can be computed for graphs G up to 7 vertices.
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Conclusion

I Zero forcing controls the nullity of a linear system.
I Apply on patterns of graphs:

I M(G) ≤ Zoc(G) for loop graphs;
I M(G ) ≤ Ẑoc(G ) for simple graphs.

I Apply on pattern of the SAP matrix:
I A has the SAP ⇔ the SAP matrix is full-rank;
I when ZSAP(G ) = 0, every matrix of G has the SAP.
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Future work I

I Ẑoc(G ) provides an upper bound for M(G ). How about the
lower bounds?

I Davila and Kenter (2015) conjectured

(g − 3)(δ − 2) + δ ≤ Z (G )

for graphs with girth g ≥ 3 and minimum degree δ ≥ 2.

I Davila, Kalinowski, and Stephen (2017) posted a proof of the
conjecture.

I Future work: Is it true that

(g − 3)(δ − 2) + δ ≤ M(G )?

I Note that when g = 3 or δ = 2, this is the delta
conjecture/theorem.
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Future work II

I The SAP allow us to perturb a matrix while preserving the
rank.

I The Strong Spectral Property (SSP) and the Strong
Multiplicity Property (SMP) preserves the spectrum and the
multiplicity list, respectively.

I The SAP/SMP/SSP should have a counterpart where
matrices do not require the symmetry.

I The counterpart of the SSP is called the Nilpotent Centralizer
method in the field of sign patterns.

I Future work: use the zero forcing to control these properties,
and find their applications.
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∗ 0 0 0 0

∗ 0 a b 0

0 a 0 c 0

0 b c 0 0

∗ ∗ 0 0 ∗







1

3
4

5

2

x2 x3 x4 x5 x1

1 2 3

4

5

Thank you!
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