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Zero forcing

Zero forcing process:

I Start with a given set of blue vertices.

I If for some x , the closed neighbourhood NG [x ] are all blue
except for one vertex y and y 6= x , then y turns blue.

An initial blue set that can make the whole graph blue is called a
zero forcing set. The zero forcing number Z (G ) of a graph G is
the minimum size of a zero forcing set.
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Z (G ) = 1

Z (G ) = 1 if and only if G is a path.
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Z (G ) = n or n − 1

Z (G ) = n =⇒ P2-free Z (G ) = n − 1 =⇒ P3-free

Let G be a graph on n vertices.

I Then Z (G ) = n if and only if G is the union of isolated
vertices.

I And Z (G ) = n − 1 if and only if G is Kr ∪̇ Kn−r , r 6= 1.
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Generalised adjacency matrix

Let G be a simple graph on n vertices. The family S(G ) consists
of all n × n real symmetric matrix M =

[
Mi ,j

]
with

Mi ,j = 0 if i 6= j and {i , j} is not an edge,

Mi ,j 6= 0 if i 6= j and {i , j} is an edge,

Mi ,j ∈ R if i = j .

S( ) 3

0 1 0
1 0 1
0 1 0

 ,
 1 −1 0
−1 2 −1
0 −1 1

 ,
 2 0.1 0

0.1 1 π
0 π 0

 , · · ·
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Why zero forcing?


−2 0 0 7 0
0 1 0 0 −9
0 0 0 3 4
7 0 3 −4 5
0 −9 4 5 0



x1
x2
x3
x4
x5

 =


0
0
0
0
0


1

2

3

4

5

I Pick a matrix A ∈ S(G ) and consider Ax = 0.

I Each vertex represents a variable. Each vertex also represents
an equation where appearing variables are the neighbours and
possibly itself.

I Blue means zero. White means unknown.
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Hidden triangle in a system

1. −2x1 +7x4 = 0
2. 1x2 −9x5 = 0
3. 3x4 +4x5 = 0
4. 7x1 +3x3 −4x4 +5x5 = 0
5. −9x2 +4x3 +5x4 = 0

1

2

3

4

5

Given x1 = x2 = 0,

1. =⇒ x4 = 0,

2. =⇒ x5 = 0,

4. =⇒ x3 = 0.

Given 1 and 2 blue,

1→ 4,

2→ 5,

4→ 3.
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Hidden triangle in a system

1. 7x4 0 0 −2x1 = 0
2. −9x5 0 +1x2 = 0
4. −4x4 +5x5 +3x3 +7x1 = 0
3. 3x4 +4x5 = 0
5. 5x4 +4x3 −9x2 = 0

1

2

3

4

5

Given x1 = x2 = 0,

1. =⇒ x4 = 0,

2. =⇒ x5 = 0,

4. =⇒ x3 = 0.

Given 1 and 2 blue,

1→ 4,

2→ 5,

4→ 3.

As long as the red terms has nonzero coefficients and the orange
terms are zero, the same argument always works.
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Triangle number

I A pattern is a matrix whose entries are in {0, ∗, ?}.
I A triangle is a submatrix of a pattern that can be permuted to

a lower triangular matrix with ∗ on the diagonal.
? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


0 ∗ 0

0 0 ∗
∗ ? ∗

→
∗ 0 0

0 ∗ 0
? ∗ ∗

 triangle
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Triangle number

I A pattern is a matrix whose entries are in {0, ∗, ?}.
I A triangle is a submatrix of a pattern that can be permuted to

a lower triangular matrix with ∗ on the diagonal.
? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


0 0 ∗
∗ ? ∗
0 ∗ ?

→
∗ 0 0

? ∗ 0
∗ ? ∗

 triangle

I The triangle number tri(P) of a pattern P is the largest size
of a triangle in P.

I Define tri(G ) = tri(P), where P is the pattern of the
generalized adjacency matrix of G .
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Triangle number and zero forcing

Theorem
For any simple graph G on n vertices, tri(G ) = n − Z (G ).

Proof.
Record all the forces in order. Find the rows of the “forc-ers”, find
the columns of the “forc-ees”, then you find the triangle.

? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


1→ 4
2→ 5
4→ 3

1

2

3

4

5
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Proposition (Kenter and L 2018)

Let G be a graph on the vertex set V . The following are
equivalent:

1. B is a zero forcing set.

2. For any A ∈ S(G ), the columns corresponding to V \ B hides
a lower triangular matrix.

3. For any A ∈ S(G ), the columns corresponding to V \ B are
linearly independent.

Theorem (AIM Work Group 2008)

Let G be a graph on n vertices. For any matrix A ∈ S(G ),
n − Z (G ) ≤ rank(A).
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Corollary tridiagonal

Corollary

Any symmetric irreducible tridiagonal matrix has all its eigenvalues
distinct. 

? ∗ 0 · · · 0

∗ ? ∗ . . .
...

0 ∗ . . .
. . . 0

...
. . .

. . . ∗
0 · · · 0 ∗ ?


Proof.
For any A ∈ S(Pn), null(A) ≤ Z (Pn) = 1 and
null(A− λI ) ≤ Z (Pn) = 1.
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Z (G )− 1 ≤ Z (G − v) ≤ Z (G ) + 1

Z (G ) = 1 Z (G − v) = 1

Z (G ) = 2 Z (G − v) = 1

Z (G ) = 2 Z (G − v) = 3
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tri(G ) is induced subgraph monotone

I If H is an induced subgraph of G , then tri(H) ≤ tri(G ).

I For each k , let Forbtri(G)≤k be the set of minimal induced
subgraph of {H : tri(H) ≥ k + 1}.

I Then tri(G ) ≤ k if and only if G is Forbtri(G)≤k -free.

Forbtri(G)≤0 = {P2}

Forbtri(G)≤1 = {P3, 2P2}

Forbtri(G)≤2 = {P4, , ,P2 ∪̇ P3, 3P2}
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.

α

β

|α|, |β| = k + 1
|α ∪ β| ≤ 2k + 2
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.

α

β

|α|, |β| = k + 1
|α ∪ β| ≤ 2k + 2

Corollary

Any graph in Forbtri(G)≤k has order at most 2k + 2.
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Forbtri(G)≤0 = {P2}

Forbtri(G)≤1 = {P3, 2P2}

Forbtri(G)≤2 = {P4, , ,P2 ∪̇ P3, 3P2}

Forbtri(G)≤3 = {19 connected, 6 disconnected}

|Forbtri(G)≤4| = 263, . . .
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Triangle number on any pattern

The definition of the triangle number does not require the pattern
to be symmetric or to be a square pattern.0 ∗ ? ∗ 0 0 0 0 ? ∗ 0 0 0 0 0 0

0 0 ∗ ? 0 0 0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 0 ∗ ? 0 0 0 0 ∗ ? ∗ 0


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Strong Arnold property

A matrix M is said to have the strong Arnold property (SAP) if
X = O is the only symmetric matrix that satisfies

I X ◦M = X ◦ I = O,

[That is, (X )i ,j = 0 when i = j and when (M)i ,j 6= 0.]

I MX = O.

Here ◦ is the entry-wise product.
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Matrices with SAP

SAP: X ◦M = X ◦ I = O and MX = O =⇒ X = O

I If M ∈ S(Kn), then M has the SAP.

I If M is nonsingular, then M has the SAP.

I The matrix M ∈ S(Pn) below has the SAP. [Will verify later.]
−1 1 0 0
1 −3 2 0
0 2 −5 3
0 0 3 −3


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Matrices without SAP

SAP: X ◦M = X ◦ I = O and MX = O =⇒ X = O

I The matrix M and X below show that M does not have the
SAP.

M =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 X =


0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1
0 1 −1 0 0
0 −1 1 0 0


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Colin de Verdiére parameter

In 1990, Colin de Verdière defined a parameter µ(G ) as the
maximum nullity over matrices M in S(G ) with the following
properties:

I M is a generalized Laplacian matrix of G ; (off-diagonal entries
≤ 0)

I M has exactly one negative eigenvalue; (counting multiplicity)

I M has the SAP.

It was shown in the same paper:

I µ(H) ≤ µ(G ) if H is a minor of G . (minor monotone)

I µ(G ) ≤ 1 if and only if G is a disjoint union of paths.

I µ(G ) ≤ 2 if and only if G is outer planar.

I µ(G ) ≤ 3 if and only if G is planar.

Conjecture: µ(G ) + 1 ≥ χ(G ) for any graph.
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How to test the SAP?

M =


−1 1 0 0
1 −3 2 0
0 2 −5 3
0 0 3 −3

 X =


0 0 a b
0 0 0 c
a 0 0 0
b c 0 0


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How to test the SAP?

M =


−1 1 0 0
1 −3 2 0
0 2 −5 3
0 0 3 −3

 X =


0 0 a b
0 0 0 c
a 0 0 0
b c 0 0



X = a


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

+ b


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

+ c


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


X = aX1,3 + bX1,4 + cX2,4
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How to test the SAP?

M =
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How to test the SAP?

M =


−1 1 0 0
1 −3 2 0
0 2 −5 3
0 0 3 −3

 X =


0 0 a b
0 0 0 c
a 0 0 0
b c 0 0


MX = aMX1,3 + bMX1,4 + cMX2,4 = O

a


0 0 −1 0
2 0 1 0
−5 0 0 0
3 0 0 0

+b


0 0 0 −1
0 0 0 1
3 0 0 0
−3 0 0 0

+c


0 0 0 1
0 0 0 −3
0 3 0 2
0 −3 0 0

 = O
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How to test the SAP?

M =


−1 1 0 0
1 −3 2 0
0 2 −5 3
0 0 3 −3

 X =


0 0 a b
0 0 0 c
a 0 0 0
b c 0 0


MX = aMX1,3 + bMX1,4 + cMX2,4 = O

a


0 0 −1 0
2 0 1 0
−5 0 0 0
3 0 0 0

+b


0 0 0 −1
0 0 0 1
3 0 0 0
−3 0 0 0

+c


0 0 0 1
0 0 0 −3
0 3 0 2
0 −3 0 0

 = O

SAP if and only if the linear system has only trivial solution.
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a


0 0 −1 0
2 0 1 0
−5 0 0 0
3 0 0 0

+b


0 0 0 −1
0 0 0 1
3 0 0 0
−3 0 0 0

+c


0 0 0 1
0 0 0 −3
0 3 0 2
0 −3 0 0

 = O

SAP if and only if the linear system has only trivial solution.

0 2 −5 3 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 3 −3 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 3 −3 0 0 0 0 1 −3 2 0


SAP if and only if full row-rank.
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0 2 −5 3 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 3 −3 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 3 −3 0 0 0 0 1 −3 2 0


SAP if and only if full row-rank.

This matrix adopts the pattern from M.0 ∗ ? ∗ 0 0 0 0 ? ∗ 0 0 0 0 0 0
0 0 ∗ ? 0 0 0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 0 ∗ ? 0 0 0 0 ∗ ? ∗ 0


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0 2 −5 3 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 3 −3 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 3 −3 0 0 0 0 1 −3 2 0


SAP if and only if full row-rank.

0 ∗ ? ∗ 0 0 0 0 ? ∗ 0 0 0 0 0 0
0 0 ∗ ? 0 0 0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 0 ∗ ? 0 0 0 0 ∗ ? ∗ 0


Always full row-rank regardless the choice of M! (That is, any
matrix M ∈ S(P4) has the SAP.)
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Main idea

I Each graph G has a pattern P.

I Use this pattern to compute the rectangular pattern Q for
testing SAP.

I Q has m rows, which is the number of non-edges.

I If Q has a large triangle of order m, than every matrix
A ∈ S(G ) has the SAP.

Will define ZSAP(G ) such that

ZSAP(G ) = 0 ⇐⇒ Q has a triangle of order m.

Theorem (L ’16)

If ZSAP(G ) = 0, then every matrix A ∈ S(G ) has the SAP.
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SAP zero forcing

I In an SAP zero forcing game, every non-edge has color either
blue or white.

I If BE is the set of blue non-edges, the local game on a given
vertex k is a conventional zero forcing game on G , with blue
vertices

φk(G ,BE ) := NG [k] ∪ N〈BE 〉(k) .

The local game is denoted by φZ (G ,BE , k).

1

2 3

4

SAP zero forcing

φZ (G ,BE , k)

k = 1, BE = {{1, 4}}

1

2 3

41

2

4

conventional zero forcing
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SAP zero forcing

I Color change rule-ZSAP:
I Forcing triple (k : i → j): If i → j in φZ (G ,BE , k), then {j , k}

turns blue.
I Odd cycle rule (i → C ): Let GW be the graph whose edges are

the white non-edges. If GW [NG (i)] contains a component that
is an odd cycle C . Then E (C ) turns blue.

I ZSAP(G ) is the minimum number of blue non-edges such that
all non-edges can turn blue eventually by CCR-ZSAP.

1

2 3

4

(1 : 2→ 3)

φZ (G ,BE , k)

k = 1

1

2 3

41

2

4

2→ 3
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SAP zero forcing

I Color change rule-ZSAP:
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 2

1 2

3

4

5

1 2

3

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 4

1 2

3

4

5

3

4

5

2

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 5

1 2

3

4

5

2 4

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 3

1 2

3

4

5

2

3

4

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

k = 5

1 2

3

4

5

2 4

5

3

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Example of ZSAP(G ) = 0

1 2

3

4

5

local game

1 2

3

4

5

Step Forcing triple Forced non-edge

1 (2 : 3→ 4) {2, 4}
2 (4 : 2→ 1) {4, 1}
3 (5 : 4→ 3) {5, 3}
4 (3 : 2→ 1) {3, 1}
5 (5 : 2→ 1) {5, 1}
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Theorem (L ’16)

If ZSAP(G ) = 0, then every matrix A ∈ S(G ) has the SAP.
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How many graphs have the property ZSAP(G ) = 0?

The table shows for fixed n the proportion of graphs with
ZSAP(G ) = 0 in all connected graphs. (Isomorphic graphs count
only once.)

n ZSAP = 0

1 1.0
2 1.0
3 1.0
4 1.0
5 0.86
6 0.79
7 0.74
8 0.73
9 0.76

10 0.79
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
? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


1→ 4
2→ 5
4→ 3

1

2

3

4

5

0 ∗ ? ∗ 0 0 0 0 ? ∗ 0 0 0 0 0 0
0 0 ∗ ? 0 0 0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 0 ∗ ? 0 0 0 0 ∗ ? ∗ 0


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
? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


1→ 4
2→ 5
4→ 3

1

2

3

4

5

Thank you!0 ∗ ? ∗ 0 0 0 0 ? ∗ 0 0 0 0 0 0
0 0 ∗ ? 0 0 0 0 0 0 0 0 ? ∗ 0 0
0 0 0 0 0 0 ∗ ? 0 0 0 0 ∗ ? ∗ 0


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