Graphs whose distance matrices have the same determinant

Jephian C.-H. Lin

Department of Mathematics and Statistics, University of Victoria \downarrow Department of Applied Mathematics, National Sun Yat-sen University

June 5, 2018 SIAM Conference on Discrete Mathematics, Denver, CO

UVic→NSYSU

Graphs with same distance determinant

Joint work with Yen-Jen Cheng (National Chiao Tung University).

≣⇒

UVic→NSYSU

Distance matrix

- Let G be a connected graph. The distance between two vertices i and j is the length of the shortest path connecting them, denoted as dist_G(i, j).
- The distance matrix of G is

$$\mathcal{D}(G) = \left[\mathsf{dist}_G(i,j)\right].$$

• For short, let $\det_{\mathcal{D}}(G) = \det(\mathcal{D}(G))$.

 $\det_{\mathcal{D}}(P_4) = -12 \qquad \qquad \det_{\mathcal{D}}(K_{1,3}) = -12$

Theorem (Graham and Pollak 1971) For every tree T on n vertices,

$$\det_{\mathcal{D}}(T) = (-1)^{n-1}(n-1)2^{n-2}.$$

-∢ ≣⇒

UVic→NSYSU

- ► Graham and Pollak 1971: det_D(T) of a tree T only depends on n. [Yan and Yeh gave a simpler proof in 2006.]
- ► Graham, Hoffman, and Hosoya 1977: det_D(G) only depends on its blocks, but not how blocks attached together.
- Bapat, Kirkland, and Neumann: weighted distance matrix of a tree.
- Bapat, Lal, and Pati; Yan and Yeh: *q*-analog and the *q*-exponential distance matrix of a tree.

- ▶ Graham and Pollak 1971: det_D(T) of a tree T only depends on n. [Yan and Yeh gave a simpler proof in 2006.]
- ► Graham, Hoffman, and Hosoya 1977: det_D(G) only depends on its blocks, but not how blocks attached together.
- Bapat, Kirkland, and Neumann: weighted distance matrix of a tree.

UVic→NSYSU

Bapat, Lal, and Pati; Yan and Yeh: *q*-analog and the *q*-exponential distance matrix of a tree.

- ▶ Graham and Pollak 1971: det_D(T) of a tree T only depends on n. [Yan and Yeh gave a simpler proof in 2006.]
- ► Graham, Hoffman, and Hosoya 1977: det_D(G) only depends on its blocks, but not how blocks attached together.
- Bapat, Kirkland, and Neumann: weighted distance matrix of a tree.
- Bapat, Lal, and Pati; Yan and Yeh: *q*-analog and the *q*-exponential distance matrix of a tree.

- ▶ Graham and Pollak 1971: det_D(T) of a tree T only depends on n. [Yan and Yeh gave a simpler proof in 2006.]
- ► Graham, Hoffman, and Hosoya 1977: det_D(G) only depends on its blocks, but not how blocks attached together.
- Bapat, Kirkland, and Neumann: weighted distance matrix of a tree.

UVic→NSYSU

Bapat, Lal, and Pati; Yan and Yeh: *q*-analog and the *q*-exponential distance matrix of a tree.

- ► Graham and Pollak 1971: det_D(T) of a tree T only depends on n. [Yan and Yeh gave a simpler proof in 2006.]
- ► Graham, Hoffman, and Hosoya 1977: det_D(G) only depends on its blocks, but not how blocks attached together.
- Bapat, Kirkland, and Neumann: weighted distance matrix of a tree.

UVic→NSYSU

Bapat, Lal, and Pati; Yan and Yeh: *q*-analog and the *q*-exponential distance matrix of a tree.

How about graphs without a cut vertex?

How about *k*-trees?

 $UVic \rightarrow NSYSU$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

How about *k*-trees?

Linear 2-trees seems promising.

v≣⊳ ≣ ∽o... UVic→NSYSU A linear k-tree is a graph obtained from K_{k+1} by adding a vertex each time and join it to the previously added vertex and k-1 of its neighbors.

Theorem (Cheng and L 2018+)

For every linear 2-tree G on n vertices,

$$\det_{\mathcal{D}}(G) = (-1)^{n-1} \left(1 + \left\lfloor \frac{n-2}{2} \right\rfloor \right) \left(1 + \left\lceil \frac{n-2}{2} \right\rceil \right).$$

Graphs with same distance determinant

UVic→NSYSU

How about linear k-tree?

イロン 不聞 とくほとう ほどう

Graphs with same distance determinant

► ≣ ৵ঀঀ UVic→NSYSU

2-clique paths

Given $p_1, \ldots, p_m \ge 3$, a 2-clique path is obtained from a sequence of complete graphs K_{p_1}, \ldots, K_{p_m} by gluing an edge of K_{p_i} to an edge of $K_{p_{i+1}}$, $i = 1, \ldots, m$; an edge cannot be glued twice. The family $\mathcal{CP}_{2:p_1,\ldots,p_m}$ collects all such graphs.

$$G \in \mathcal{CP}_{2:3,4,3,4}$$

 $\det_{\mathcal{D}}(G) = (1+1+1)(1+2+2) = 15$

Theorem (Cheng and L 2018+)

For every graph $G \in \mathcal{CP}_{2:p_1,...,p_m}$ on n vertices,

$$\det_{\mathcal{D}}(G) = (-1)^{n-1} \left(1 + \sum_{k \text{ odd}} (p_k - 2) \right) \left(1 + \sum_{k \text{ even}} (p_k - 2) \right)$$

Alternative way to construct a 2-clique path

- Decide the backward degree q_1, \ldots, q_n ; e.g. 0, 1, 2, 2, 3, 2, 2, 3
- Define $b_k = k q_k + 1$ so that

$$[b_k, k-1] = \{b_k, \dots, k-1\}$$

are the previous $q_k - 1$ vertices before k.

Start with K₂ on vertices 1 and 2. For k = 3,..., n, add a new vertex k, then join it with the q_k − 1 vertices in [b_k, k − 1] and another neighbor a_k of k − 1.

$$k = 6, q_k = 2$$

$$b_k = 5, [b_k, k - 1] = \{5\}$$

$$a_k \text{ can be chosen from } \{2, 3, 4\}$$

Graphs with same distance determinant

 $UVic \rightarrow NSYSU$

The CP graphs

- A sequence $0, 1, q_3, \ldots, q_n$ is called a non-leaping sequence if $2 \le q_k \le q_{k-1} + 1$ for $k \ge 3$. (So $q_3 = 2$ if $n \ge 3$.)
- ► The CP graphs CP_{q1},...,qn</sub> consists of any graphs constructed by the following way:
 - $b_k = k q_k + 1$ so that $[b_k, k 1]$ has $q_k 1$ elements.
 - Start with K₂ on vertices 1 and 2. For k = 3,..., n, add a new vertex k, then join it with the q_k − 1 vertices in [b_k, k − 1] and another neighbor a_k of k − 1.

► Examples of *CP*_{0,1,2,2,2,2,3,3}:

Reducing matrix

► The reducing matrix E of a CP graph is an n × n matrix whose k-th column is

$$\begin{cases} \mathbf{e}_k & \text{if } k \in \{1,2\}, \\ \mathbf{e}_k - \mathbf{e}_{\mathbf{a}_k} - \mathbf{e}_{k-1} + \mathbf{e}_{\mathbf{a}_{k-1}} & \text{if } k \geq 3. \end{cases}$$

Γ1	0	0	1	0	0	0	0
0	1	-1	-1	1	0	0	0
0	0	1	-1	-1	1	0	0
0	0	0	1	-1	-1	0	1
0	0	0	0	1	-1	0	-1
0	0	0	0	0	1	-1	0
0	0	0	0	0	0	1	-1
0	0	0	0	0	0	0	1

Theorem (Cheng and L 2018+)

Let s be a non-leaping sequence. For any $G \in CP_s$ with the distance matrix D and the reducing matrix E, the matrix

 $E^{\top}\mathcal{D}E$

only depends on s.

Note that E is an upper triangular matrix with every diagonal entry equal to 1.

Corollary (Cheng and L 2018+) Let s be a non-leaping sequence. Then

```
\det_{\mathcal{D}}(G) and \operatorname{inertia}_{\mathcal{D}}(G)
```

are independent of the choice of $G \in C\mathcal{P}_s$.

 $UVic \rightarrow NSYSU$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

 $\det_{\mathcal{D}}(G_1) = \det_{\mathcal{D}}(G_2) = 56$

Graphs with same distance determinant

▶ ≣ ৵९ UVic→NSYSU

《曰》《聞》《臣》《臣》

$$\det_{\mathcal{D}}(G_1) = \det_{\mathcal{D}}(G_2) = 56$$

Thank you!

æ

 $UVic \rightarrow NSYSU$

Graphs with same distance determinant

References I

- R. B. Bapat, S. Kirkland, and M. Neumann. On distance matrices and Laplacians. *Linear Algebra Appl.*, 401:193–209, 2005.
- R. B. Bapat, A. K. Lal, and S. Pati.
 A *q*-analogue of the distance matrix of a tree.
 Linear Algebra Appl., 416:799–814, 2006.
- Y.-J. Cheng and J. C.-H. Lin. On the distance matrices of the CP graphs. https://arxiv.org/abs/1805.10269. (under review).

References II

- R. L. Graham, A. J. Hoffman, and H. Hosoya. On the distance matrix of a directed graph. J. Graph Theory, 1:85–88, 1977.
- R. L. Graham and H. O. Pollak.
 On the addressing problem for loop switching.
 The Bell System Technical Journal, 50:2495–2519, 1971.
- W. Yan and Y.-N. Yeh.
 - A simple proof of Graham and Pollak's theorem.
 - J. Combin. Theory Ser. A, 113:892-893, 2006.

UVic→NSYSU

References III

W. Yan and Y.-N. Yeh.

The determinants of *q*-distance matrices of trees and two quantities relating to permutations.

Adv. in Appl. Math., 39:311-321, 2007.

