Spectral Clustering: Theory and Practice

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

January 26, 2024 The 1st Sizihwan Combinatorics Memorial Conference

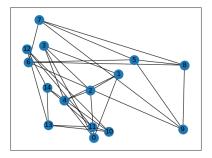
Jephian C.-H. Lin (NSYSU)

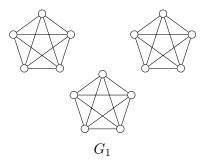
SC: Theory and Practice

January 26, 2024 1 / 20

E 5 4 E 5

How to find the components?





(a)

😊 Breadth-first search 💿 🔅 Laplacian matrix

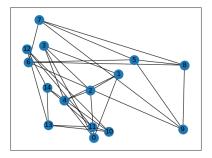
Jephian C.-H. Lin (NSYSU)

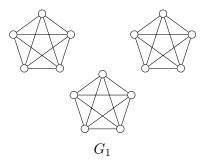
SC: Theory and Practice

January 26, 2024 2 / 20

3

How to find the components?





③ Breadth-first search

© Laplacian matrix

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

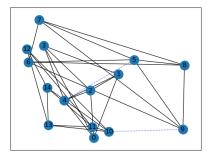
January 26, 2024

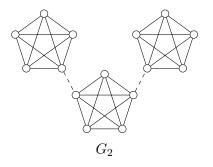
3

2/20

(a)

How to find the clusters?





・ロト ・ 四ト ・ ヨト ・ ヨト

🐵 Breadth-first search 💿 😳 Laplacian matrix

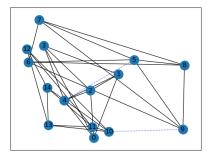
Jephian C.-H. Lin (NSYSU)

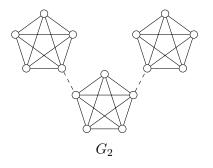
SC: Theory and Practice

January 26, 2024 3 / 20

- 34

How to find the clusters?





© Breadth-first search © Laplacian matrix

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

3

3/20

(a)

Miroslav Fiedler 1926–2015

Known for

- algebraic connectivity,
- Fiedler vector,
- and more.

Have impact on

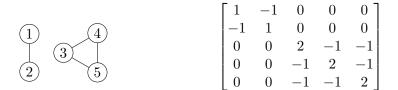
- graph partition,
- spectral clustering,
- image segmentation,
- and more.

Source: MacTutor https://mathshistory.st-andrews.ac.uk/Biographies/Fiedler/

4 / 20

- 4 周 ト 4 ヨ ト 4 ヨ ト

Laplacian matrix



Definition

Let G be a graph on n vertices. The Laplacian matrix of G is the $n\times n$ matrix $L(G)=\left[\ell_{i,j}\right]$ such that

$$\ell_{i,j} = \begin{cases} -1 & \text{if } \{i,j\} \in E(G), \\ \deg_G(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Jephian C.-H. Lin (NSYSU)

イロト イポト イヨト イヨト 二日

Laplacian matrix

2

 $\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$

< 🗗 ▶

Proposition

•
$$L\mathbf{1} = \mathbf{0}$$
.
• $\mathbf{x}^{\top} L \mathbf{x} = \sum_{\{i,j\} \in E} (x_i - x_j)^2$, which means L is PSD
• $L \mathbf{x} = \mathbf{0} \iff \mathbf{x}^{\top} L \mathbf{x} = 0$.

4

5

3

Example

For $G = K_2 \stackrel{.}{\cup} K_3$,

$$\mathbf{x}^{\top} L \mathbf{x} = (x_1 - x_2)^2 + (x_3 - x_4)^2 + (x_4 - x_5)^2 + (x_3 - x_5)^2.$$

Jephian C.-H. Lin (NSYSU)

< Ξ

Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)

Let G be a graph and L = L(G). Then null(L) is the number of components of G, and

$$\ker(L) = \operatorname{span}\{\phi_{X_1}, \dots, \phi_{X_k}\},\$$

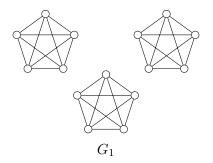
where X_1, \ldots, X_k are the vertex sets of the components of G.

Example

For $G = K_2 \cup K_3$,

$$\operatorname{spec}(L) = \{0, 0, 2, 3, 3\} \text{ and } \operatorname{ker}(L) = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1\\1 \end{bmatrix} \right\}.$$

Jephian C.-H. Lin (NSYSU)



$$\operatorname{spec}(L) = \{0, 0, 0, 5, \ldots\} \text{ and } \operatorname{ker}(L) = \operatorname{span} \left\{ \begin{bmatrix} \mathbf{1}_5 \\ \mathbf{0}_5 \\ \mathbf{0}_5 \end{bmatrix}, \begin{bmatrix} \mathbf{0}_5 \\ \mathbf{1}_5 \\ \mathbf{0}_5 \end{bmatrix}, \begin{bmatrix} \mathbf{0}_5 \\ \mathbf{0}_5 \\ \mathbf{1}_5 \end{bmatrix} \right\}.$$

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024 7 / 20

・ロト・日本・ キャー キャー ひゃく

Weighted Laplacian matrix

Definition

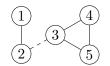
Let G be a weighted graph on n vertices with weights $w_{i,j}$. The weighted Laplacian matrix of G is the $n \times n$ matrix $L(G) = \lfloor \ell_{i,j} \rfloor$ such that

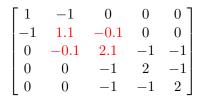
$$\ell_{i,j} = \begin{cases} -w_{i,j} & \text{if } \{i,j\} \in E(G) \\ \sum_{k:k \sim i} w_{i,k} & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Jephian C.-H. Lin (NSYSU)

イロト イポト イヨト イヨト 二日

Weighted Laplacian matrix





Proposition

•
$$L\mathbf{1} = \mathbf{0}$$
.
• $\mathbf{x}^{\top} L \mathbf{x} = \sum_{\{i,j\} \in E} w_{i,j} (x_i - x_j)^2$, which means L is PSD.
• $L \mathbf{x} = \mathbf{0} \iff \mathbf{x}^{\top} L \mathbf{x} = 0$.

Example

For $G = K_2 \cup K_3 + \{2, 3\}$,

 $\mathbf{x}^{\top} L \mathbf{x} = (x_1 - x_2)^2 + (x_3 - x_4)^2 + (x_4 - x_5)^2 + (x_3 - x_5)^2 + \mathbf{0.1}(x_2 - x_3)^2.$

Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)

Let G be a graph and L = L(G). Then null(L) is the number of components of G, and

$$\ker(L) = \operatorname{span}\{\phi_{X_1}, \dots, \phi_{X_k}\},\$$

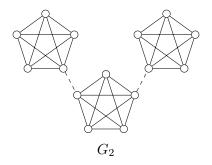
where X_1, \ldots, X_k are the vertex sets of the components of G.

Example

For
$$G = K_2 \cup K_3 + \{2, 3\}$$
,

$$\operatorname{spec}(L) = \{0, 0.08, 2.05, 3, 3.07\} \text{ and } \operatorname{ker}(L) = \operatorname{span} \{$$

Jephian C.-H. Lin (NSYSU)



 $\operatorname{spec}(L) = \{0, 0.02, 0.06, 5, \ldots\} \text{ and } \operatorname{ker}(L) = \{1\}.$

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

3

10/20

(a)

Just a small perturbation: first few eigvals and eigvecs

 $\{0,0,0\} \to \{0,0.02,0.06\}$

[0	.45	0	0		0.26	0.32	-0.18			
0	.45	0	0		0.26	0.32	-0.18			
0	.45	0	0		0.26	0.32	-0.18			
0	.45	0	0		0.26	0.32	-0.18			
0	.45	0	0		0.26	0.31	-0.17			
	0	0.45	0		0.26	0.01	0.36			
	0	0.45	0		0.26	-0.00	0.37			
	0	0.45	0	\rightarrow	0.26	-0.00	0.37			
	0	0.45	0		0.26	-0.00	0.37			
	0	0.45	0		0.26	-0.01	0.36			
	0	0	0.45		0.26	-0.31	-0.17			
	0	0	0.45		0.26	-0.32	-0.18			
	0	0	0.45		0.26	-0.32	-0.18			
	0	0	0.45		0.26	-0.32	-0.18			
L	0	0	0.45		0.26	-0.32	-0.18			
_	<ロ> <部> <き> <き> <き> <き のへの									

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

Count the number of clusters by the Laplacian matrix

Theorem

Let G be a weighted graph and L = L(G). Then the number of zeroish eigenvalues suggests the number of clusters of G, and vertices in the same cluster share similar values in each eigenvector.

Example For $G = K_2 \dot{\cup} K_3 + \{2,3\}$, $\operatorname{spec}(L) = \{0, 0.08, 2.05, 3, 3.07\} \text{ and } 0, 0.08 \rightarrow \begin{bmatrix} 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.45 \end{bmatrix}, \begin{bmatrix} 0.57\\ 0.52\\ 0.35\\ 0.37\\ 0.37 \end{bmatrix}$

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

12/20

< □ > < 同 > < 回 > < 回 > < 回 >

Spectral embedding algorithm

Algorithm Input: a weighted graph G on n vertices and a targeted dimension d Output: an $n \times d$ matrix Y Steps: 1 $L \leftarrow L(G)$. 2 Find the first d eigenvalues $\lambda_1 \leq \cdots \leq \lambda_d$ and the corresponding eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_d$. 3 $Y \leftarrow$ the matrix composed of columns $\mathbf{u}_1, \ldots, \mathbf{u}_d$. 4 Let $\mathbf{y}_1, \ldots, \mathbf{y}_n$ be the rows of Y. Define the embedding $f: V(G) \rightarrow \mathbb{R}^d$ by $i \mapsto \mathbf{y}_i$.

Remark

- Since $\mathbf{u}_1 = \frac{1}{\sqrt{n}} \mathbf{1}$, people often take $\lambda_2 < \cdots < \lambda_{d+1}$ and their eigenvectors instead.
- Main idea: The embedding try to put adjacent vertices together—the stronger the weight, the closer they are.

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \rightarrow Y = \begin{bmatrix} -0.09 & -0.63 \\ -0.62 & -0.11 \\ 0.57 & -0.28 \\ 0.44 & 0.45 \\ -0.29 & 0.56 \end{bmatrix}$$

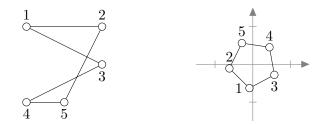
Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

・ロト・日本・日本・日本・日本・日本

14 / 20



The spectral embedding algorithm occurs in

- graph drawing (Hall 1970, Koren 2005),
- graph partitioning (Pothen, Simon, and Liou 1990),
- graph ordering (Juvan and Mohar 1992),
- spectral clustering (Shi and Malik 2000),
- Laplacian eigenmap (Belkin and Niyogi 2003),
- and more.

How to draw a graph properly?

Problem

Given a weighted graph G on n vertices and a target dimension d, find an $n\times d$ matrix Y such that

minimize
$$\operatorname{tr}(Y^{\top}LY) = \sum_{\{i,j\}\in E(G)} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

subject to $\mathbf{1}^{\top}Y = \mathbf{0}^{\top}$ and $Y^{\top}Y = I$.

Intuition:

- $tr(T^{\top}LY)$: the potential energy of a spring-mass system.
- $\mathbf{1}^{\top}Y = \mathbf{0}^{\top}$: centered at the origin.
- $Y^{\top}Y = I$: normalized each coordinate.

Spectral embedding algorithm generates the answer!

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to draw a graph properly?

Problem

Given a weighted graph G on n vertices and a target dimension d, find an $n\times d$ matrix Y such that

minimize
$$\operatorname{tr}(Y^{\top}LY) = \sum_{\{i,j\}\in E(G)} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

subject to $\mathbf{1}^{\top}Y = \mathbf{0}^{\top}$ and $Y^{\top}Y = I$.

Intuition:

- $tr(T^{\top}LY)$: the potential energy of a spring-mass system.
- $\mathbf{1}^{\top}Y = \mathbf{0}^{\top}$: centered at the origin.
- $Y^{\top}Y = I$: normalized each coordinate.

Spectral embedding algorithm generates the answer!

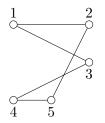
Jephian C.-H. Lin (NSYSU)

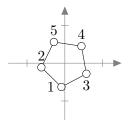
SC: Theory and Practice

15/20

Some exmples

SC: Theory and Practice





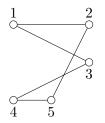
$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \rightarrow Y = \begin{bmatrix} -0.09 & -0.63 \\ -0.62 & -0.11 \\ 0.57 & -0.28 \\ 0.44 & 0.45 \\ -0.29 & 0.56 \end{bmatrix}$$

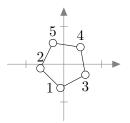
17 / 20

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

・ロト・日本・日本・日本・日本・日本 January 26, 2024





$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & 0 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \rightarrow Y = \begin{bmatrix} -0.09 & -0.63 \\ -0.62 & -0.11 \\ 0.57 & -0.28 \\ 0.44 & 0.45 \\ -0.29 & 0.56 \end{bmatrix}$$

Thanks!

10

17 / 20

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

・ロト ・四ト ・ヨト ・ヨト

References I

W. N. Anderson, Jr. and R. D. Morley.Eigenvalues of the Laplacian of a graph.University of Maryland Technical Report, TR-71-45, 1971.

M. Belkin and P. Niyogi.

Laplacian eigenmaps for dimensionality reduction and data representation.

Neural Computation, 15:1373–1396, 2003.

M. Fiedler.

Algebraic connectivity of graphs. *Czechoslovak Math. J.*, 23:298–305, 1973.

M. Fiedler.

Eigenvalues of acyclic matrices. *Czechoslovak Math. J.*, 25:607–618, 1975.

Jephian C.-H. Lin (NSYSU)

SC: Theory and Practice

January 26, 2024

18/20

References II

M. Fiedler.

A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.

Czechoslovak Math. J., 25:619-633, 1975.

K. M. Hall.

An *r*-dimensional quadratic placement algorithm. *Management Science*, 17:219–229, 1970.

M. Juvan and B. Mohar.

Optimal linear labelings and eigenvalues of graphs. *Discrete Appl. Math.*, 36:153–168, 1992.

Y. Koren.

Drawing graphs by eigenvectors: Theory and practice. Computers & Mathematics with Applications, 49:1867–1888, 2005.

19/20

< □ > < 同 > < 回 > < 回 > < 回 >

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430–452, 1990.

J. Shi and J. Malik.

Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

20 / 20