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How to find the components?

G1

, Breadth-first search , Laplacian matrix
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How to find the clusters?

G2

/ Breadth-first search , Laplacian matrix
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Miroslav Fiedler
1926–2015

Known for
algebraic connectivity,
Fiedler vector,
and more.

Have impact on
graph partition,
spectral clustering,
image segmentation,
and more.

Source: MacTutor https://mathshistory.st-andrews.ac.uk/Biographies/Fiedler/

Jephian C.-H. Lin (NSYSU) SC: Theory and Practice January 26, 2024 4 / 20

https://mathshistory.st-andrews.ac.uk/Biographies/Fiedler/


Laplacian matrix
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1 −1 0 0 0
−1 1 0 0 0
0 0 2 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2


Definition
Let G be a graph on n vertices. The Laplacian matrix of G is the n× n
matrix L(G) =

[
`i,j
]
such that

`i,j =


−1 if {i, j} ∈ E(G),

degG(i) if i = j,

0 otherwise.
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0 0 2 −1 −1
0 0 −1 2 −1
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Proposition

1 L1 = 0.
2 x>Lx =

∑
{i,j}∈E(xi − xj)2, which means L is PSD.

3 Lx = 0 ⇐⇒ x>Lx = 0.

Example
For G = K2 ∪̇K3,

x>Lx = (x1 − x2)2 + (x3 − x4)2 + (x4 − x5)2 + (x3 − x5)2.
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Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)
Let G be a graph and L = L(G). Then null(L) is the number of
components of G, and

ker(L) = span{φX1 , . . . , φXk
},

where X1, . . . , Xk are the vertex sets of the components of G.

Example
For G = K2 ∪̇K3,

spec(L) = {0, 0, 2, 3, 3} and ker(L) = span




1
1
0
0
0

 ,

0
0
1
1
1


 .
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G1

spec(L) = {0, 0, 0, 5, . . .} and ker(L) = span


1505
05

 ,
0515
05

 ,
0505
15

 .
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Weighted Laplacian matrix

1
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1 −1 0 0 0
−1 1.1 −0.1 0 0
0 −0.1 2.1 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2


Definition
Let G be a weighted graph on n vertices with weights wi,j . The weighted
Laplacian matrix of G is the n× n matrix L(G) =

[
`i,j
]
such that

`i,j =


−wi,j if {i, j} ∈ E(G),∑

k:k∼iwi,k if i = j,

0 otherwise.
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Weighted Laplacian matrix
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1 −1 0 0 0
−1 1.1 −0.1 0 0
0 −0.1 2.1 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2


Proposition

1 L1 = 0.
2 x>Lx =

∑
{i,j}∈E wi,j(xi − xj)2, which means L is PSD.

3 Lx = 0 ⇐⇒ x>Lx = 0.

Example
For G = K2 ∪̇K3 + {2, 3},

x>Lx = (x1−x2)2+(x3−x4)2+(x4−x5)2+(x3−x5)2+0.1(x2−x3)2.
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Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)
Let G be a graph and L = L(G). Then null(L) is the number of
components of G, and

ker(L) = span{φX1 , . . . , φXk
},

where X1, . . . , Xk are the vertex sets of the components of G.

Example
For G = K2 ∪̇K3 + {2, 3},

spec(L) = {0, 0.08, 2.05, 3, 3.07} and ker(L) = span




1
1
1
1
1


 .
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G2

spec(L) = {0, 0.02, 0.06, 5, . . .} and ker(L) = {1}.
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Just a small perturbation: first few eigvals and eigvecs

{0, 0, 0} → {0, 0.02, 0.06}



0.45 0 0
0.45 0 0
0.45 0 0
0.45 0 0
0.45 0 0
0 0.45 0
0 0.45 0
0 0.45 0
0 0.45 0
0 0.45 0
0 0 0.45
0 0 0.45
0 0 0.45
0 0 0.45
0 0 0.45



→



0.26 0.32 −0.18
0.26 0.32 −0.18
0.26 0.32 −0.18
0.26 0.32 −0.18
0.26 0.31 −0.17
0.26 0.01 0.36
0.26 −0.00 0.37
0.26 −0.00 0.37
0.26 −0.00 0.37
0.26 −0.01 0.36
0.26 −0.31 −0.17
0.26 −0.32 −0.18
0.26 −0.32 −0.18
0.26 −0.32 −0.18
0.26 −0.32 −0.18
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Count the number of clusters by the Laplacian matrix

Theorem
Let G be a weighted graph and L = L(G). Then the number of zeroish
eigenvalues suggests the number of clusters of G, and vertices in the same
cluster share similar values in each eigenvector.

Example
For G = K2 ∪̇K3 + {2, 3},

spec(L) = {0, 0.08, 2.05, 3, 3.07} and 0, 0.08→


0.45
0.45
0.45
0.45
0.45

 ,

0.57
0.52
0.35
0.37
0.37
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Spectral embedding algorithm

Algorithm
Input: a weighted graph G on n vertices and a targeted dimension d

Output: an n× d matrix Y
Steps: 1 L← L(G).

2 Find the first d eigenvalues λ1 ≤ · · · ≤ λd and the
corresponding eigenvectors u1, . . . ,ud.

3 Y ← the matrix composed of columns u1, . . . ,ud.
4 Let y1, . . . ,yn be the rows of Y . Define the embedding
f : V (G)→ Rd by i 7→ yi.

Remark
1 Since u1 =

1√
n
1, people often take λ2 < · · · < λd+1 and their

eigenvectors instead.
2 Main idea: The embedding try to put adjacent vertices together—the

stronger the weight, the closer they are.
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L =


2 −1 −1 0 0
−1 2 0 0 −1
−1 0 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

→ Y =


−0.09 −0.63
−0.62 −0.11
0.57 −0.28
0.44 0.45
−0.29 0.56



Jephian C.-H. Lin (NSYSU) SC: Theory and Practice January 26, 2024 14 / 20



1 2

3

4 5

1

2

3

45

The spectral embedding algorithm occurs in
graph drawing (Hall 1970, Koren 2005),
graph partitioning (Pothen, Simon, and Liou 1990),
graph ordering (Juvan and Mohar 1992),
spectral clustering (Shi and Malik 2000),
Laplacian eigenmap (Belkin and Niyogi 2003),
and more.
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How to draw a graph properly?

Problem
Given a weighted graph G on n vertices and a target dimension d, find an
n× d matrix Y such that

minimize tr(Y >LY ) =
∑
{i,j}∈E(G) ‖yi − yj‖2

subject to 1>Y = 0> and
Y >Y = I.

Intuition:
tr(T>LY ): the potential energy of a spring-mass system.
1>Y = 0>: centered at the origin.
Y >Y = I: normalized each coordinate.

Spectral embedding algorithm generates the answer!
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Some exmples
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https://colab.research.google.com/github/jephianlin/ModularPython/blob/master/Examples-of-spectral-clustering.ipynb


1 2

3

4 5

1

2

3

45

L =


2 −1 −1 0 0
−1 2 0 0 −1
−1 0 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

→ Y =


−0.09 −0.63
−0.62 −0.11
0.57 −0.28
0.44 0.45
−0.29 0.56



Thanks!
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