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System of linear equations

2x +3y −z = 4
x −y +2z = 3

−3x +2y +z = 2

Hard to know if the solution exists, or if the solution is unique.

I don’t want to solve it!
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System of linear equations

2x +y −z = 1
2y = 4

+2y +3z = 7

Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.

I like it! ,
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Main philosophy

2x + y + 3z = 7

x = 1, y = 2 =⇒ z = 1

In a linear equation, if all but one variable are known, then
this remaining variable is also known.

2x + y + 3z = 0

x = 0, y = 0 =⇒ z = 0

In a homogeneous linear equation, if all but one variable
are zero, then this remaining variable is also zero.
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Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

Zero forcing 5/27 NSYSU



Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

Zero forcing 5/27 NSYSU



Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

Zero forcing 5/27 NSYSU



Hidden triangle in a system

2. y +z = 0
1. x +z +u = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

Zero forcing 5/27 NSYSU



Hidden triangle in a system

2. y +z = 0
1. x +z +u = 0
3. x +y +z +u +w = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then
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Hidden triangle in a system

2. y +z +0 +0 = 0
1. x +z +u +0 = 0
3. x +y +z +u +w = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

As long as the red terms has nonzero coefficients and the orange
terms are zero, the same argument always works.
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1
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1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 = 1
2b0 +1b1 = 0
3b0 +2b1 +1b2 = 0
4b0 +3b1 +2b2 +1b3 = 0

...
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 +0 +0 +0 +0 = 1
2b0 +1b1 +0 +0 +0 = 0
3b0 +2b1 +1b2 +0 +0 = 0
4b0 +3b1 +2b2 +1b3 +0 = 0

...

A formal power series has an inverse if and only if the constant
term is nonzero.
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Electronic circuit
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Electronic circuit

a1V1 + a2V2 + a3V3
nonzero

+ a0V0
zero or nonzero

= 0

The conservation law leads to a linear equation on each node;
itself and its neighbors represent the variables.

V0V1

V2

V3r1
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How many sensors required to monitor the voltages?

▶ Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighborhood).

▶ If in a closed neighborhood, all but one voltages are known,
then this remaining one are also known.
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Model by graphs and matrices

▶ A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

▶ The linear equations can be recorded into a matrix; each row
represents a equation, and each column represents an unknown
voltage.

▶ This is a symmetric matrix where rows and columns are both
indexed by the vertices.
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Let G be a simple graph on n vertices. The family S(G ) consists of
all n × n real symmetric matrix M =

[
Mi ,j

]
with

Mi ,j = 0 if i ̸= j and {i , j} is not an edge,
Mi ,j ̸= 0 if i ̸= j and {i , j} is an edge,
Mi ,j ∈ R if i = j .

S( ) ∋

0 1 0
1 0 1
0 1 0

 ,

 1 −1 0
−1 2 −1
0 −1 1

 ,

 2 0.1 0
0.1 1 π
0 π 0

 , · · ·
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Zero forcing

Zero forcing process:
▶ Start with a given set of blue vertices (sensors).
▶ If for some x , the closed neighborhood NG [x ] are all blue

except for one vertex y and y ̸= x , then y turns blue.
An initial blue set that can make the whole graph blue is called a
zero forcing set. The zero forcing number Z (G ) of a graph G is the
minimum size of a zero forcing set.

sensor

known

unknown
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.

Many studies are done on zero forcing and its variation power
domination.
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Hidden triangle revisit

1, x

2, y

3, z

4,w

5, u 1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given blue vertices: 1 and 2.
Then

2 → 3,
1 → 5,
3 → 4.

Given information: x = y = 0.
Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.
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Proposition (Kenter and L 2018)
Let G be a graph on the vertex set V . The following are
equivalent:

1. B is a zero forcing set.
2. For any A ∈ S(G ), the columns corresponding to V \ B hides

a lower triangular matrix.
3. For any A ∈ S(G ), the columns corresponding to V \ B are

linearly independent.

Theorem (AIM Work Group 2008)
Let G be a graph on n vertices. Then for any matrix A ∈ S(G ),
n − Z (G ) ≤ rank(A).

Zero forcing 14/27 NSYSU



More zero forcing

▶ Same argument works for non-symmetric matrices.
▶ When more information are known on the matrices, the design

of the zero forcing process can be improved.
▶ For example, nonnegative matrices, zero diagonal entries, or

nonzero diagonal entries.
▶ They all follow the same philosophy.
▶ Zero forcing is related to the minimum rank problem (Math),

quantum control (Physics), building logic circuit (Physics), the
graph searching problem (ComS).
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Domination number and zero forcing
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Zero forcing with nonzero diagonal

Color change rule:
If for some x , the closed neighbourhood NG [x ] are all blue
except for one vertex y , then y turns blue.

Zℓ̇(G ) =minimum size of a zero forcing set.
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Zero forcing with nonzero diagonal

Color change rule:
If for some x , the closed neighbourhood NG [x ] are all blue
except for one vertex y , then y turns blue.

Zℓ̇(G ) =minimum size of a zero forcing set.

Theorem (Hogben 2010)
Let G be a graph on n vertices. Then n− Zℓ̇(G ) ≤ rank(A) for any
A ∈ S(G ) with nonzero diagonal entries.
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Zero forcing with zero diagonal

Color change rule:
If for some x , the open neighbourhood NG (x) are all blue
except for one vertex y , then y turns blue.

Z−(G ) =minimum size of a zero forcing set.
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Zero forcing with zero diagonal

Color change rule:
If for some x , the open neighbourhood NG (x) are all blue
except for one vertex y , then y turns blue.

Z−(G ) =minimum size of a zero forcing set.

Theorem (Hogben 2010)
Let G be a graph on n vertices. Then n − Z−(G ) ≤ rank(A) for
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Domination number

Let G be a graph. The domination number γ(G ) is the minimum
cardinality of a set X such that⋃

x∈X
NG [x ] = V (G ).

The total domination number γt(G ) is the minimum cardinality of
a set X such that ⋃

x∈X
NG (x) = V (G ).

γ(P3) = 1 γt(P3) = 2
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Greedy algorithm

▶ Greedy algorithm follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope
of finding a global optimum.

▶ Greedy algorithm for domination number: When X are chosen
and not yet dominate the whole graph, pick a vertex v such
that

NG [v ] \
⋃
x∈X

NG [x ] ̸= ∅.
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Grundy domination number

The Grundy domination number γgr(G ) is the length of the longest
sequence (v1, v2, . . . , vk) such that

NG [vi ] \
i−1⋃
j=1

NG [vj ] ̸= ∅.
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Grundy domination number

The Grundy domination number γgr(G ) is the length of the longest
sequence (v1, v2, . . . , vk) such that

NG [vi ] \
i−1⋃
j=1

NG [vj ] ̸= ∅.

So γgr(G ) = 5.
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Grundy total domination number

The Grundy total domination number γtgr(G ) is the length of the
longest sequence (v1, v2, . . . , vk) such that

NG (vi ) \
i−1⋃
j=1

NG (vj) ̸= ∅.
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Grundy total domination number

The Grundy total domination number γtgr(G ) is the length of the
longest sequence (v1, v2, . . . , vk) such that

NG (vi ) \
i−1⋃
j=1

NG (vj) ̸= ∅.

So γtgr(G ) = 4.
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Grundy domination number, zero forcing number, and the
rank bound

Theorem (L 2017)
Let G be a graph on n vertices. Then

γgr(G ) = n − Zℓ̇(G ) and γtgr(G ) = n − Z−(G ).

Therefore,
γgr(G ) ≤ rank(A)

for any A ∈ S(G ) with diagonal entries all nonzero; and

γtgr(G ) ≤ rank(A)

for any A ∈ S(G ) with zero diagonal.
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Proof of the theorem

Key: Reverse the forcing process!

1

2

3

4

5 6
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Proof of the theorem

Key: Reverse the forcing process!

1

2

3

4

5 6
6 → 5
5 → 3
4 → 4
2 → 2
3 → 1

Thank you!
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