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System of linear equations

2x +3y −z = 4
x −y +2z = 3

−3x +2y +z = 2

Hard to know if the solution exists, or if the solution is unique.

I don’t want to solve it!
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System of linear equations

2x +y −z = 1
2y = 4

+2y +3z = 7

Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.

I like it! ,
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Main philosophy

2x + y + 3z = 7

x = 1, y = 2 =⇒ z = 1

In a linear equation, if all but one variable are known, then
this remaining variable is also known.

2x + y + 3z = 0

x = 0, y = 0 =⇒ z = 0

In a homogeneous linear equation, if all but one variable
are zero, then this remaining variable is also zero.
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Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.
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Hidden triangle in a system

2. y +z = 0
1. x +z +u = 0
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Hidden triangle in a system

2. y +z = 0
1. x +z +u = 0
3. x +y +z +u +w = 0
1. x +z +u = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.
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Hidden triangle in a system

2. y +z +0 +0 = 0
1. x +z +u +0 = 0
3. x +y +z +u +w = 0
1. x +z +u = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.

As long as the red terms has nonzero coefficients and the orange
terms are zero, the same argument always works.
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1
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Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 = 1
2b0 +1b1 = 0
3b0 +2b1 +1b2 = 0
4b0 +3b1 +2b2 +1b3 = 0

...
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 +0 +0 +0 +0 = 1
2b0 +1b1 +0 +0 +0 = 0
3b0 +2b1 +1b2 +0 +0 = 0
4b0 +3b1 +2b2 +1b3 +0 = 0

...

A formal power series has an inverse if and only if the constant
term is nonzero.
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Electronic circuit

1
r1

(V1 − V0) +
1
r2

(V2 − V0) +
1
r3

(V3 − V0) + εV0 = 0

V0V1

V2

V3r1

r2

r3
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Electronic circuit

1
r1
V1 +

1
r2
V2 +

1
r3
V3 + (ε− 1

r1
− 1

r2
− 1

r3
)V0 = 0

a1V1 + a2V2 + a3V3
nonzero

+ a0V0
zero or nonzero

= 0

V0V1

V2

V3r1

r2
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Electronic circuit

a1V1 + a2V2 + a3V3
nonzero

+ a0V0
zero or nonzero

= 0

The conservation law leads to a linear equation on each node;
itself and its neighbors represent the variables.

V0V1

V2

V3r1

r2

r3
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How many sensors required to monitor the voltages?

I Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighborhood).

I If in a closed neighborhood, all but one voltages are known,
then this remaining one are also known.
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Model by graphs and matrices

I A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

I The linear equations can be recorded into a matrix; each row
represents a equation, and each column represents an unknown
voltage.

I This is a symmetric matrix where rows and columns are both
indexed by the vertices.
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Let G be a simple graph on n vertices. The family S(G ) consists of
all n × n real symmetric matrix M =

[
Mi ,j

]
with

Mi ,j = 0 if i 6= j and {i , j} is not an edge,
Mi ,j 6= 0 if i 6= j and {i , j} is an edge,
Mi ,j ∈ R if i = j .

S( ) 3

0 1 0
1 0 1
0 1 0

 ,
 1 −1 0
−1 2 −1
0 −1 1

 ,
 2 0.1 0
0.1 1 π
0 π 0

 , · · ·
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Zero forcing

Zero forcing process:
I Start with a given set of blue vertices (sensors).
I If for some x , the closed neighborhood NG [x ] are all blue

except for one vertex y and y 6= x , then y turns blue.
An initial blue set that can make the whole graph blue is called a
zero forcing set. The zero forcing number Z (G ) of a graph G is the
minimum size of a zero forcing set.

sensor

known

unknown
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.

Many studies are done on zero forcing and its variation power
domination.
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Hidden triangle revisit

1, x

2, y

3, z

4,w

5, u 1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given blue vertices: 1 and 2.
Then

2→ 3,
1→ 5,
3→ 4.

Given information: x = y = 0.
Then

2. =⇒ z = 0,
1. =⇒ u = 0,
3. =⇒ w = 0.
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1, x

2, y
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4,w

5, u 2. y +z +0 +0 = 0
1. x +z +u +0 = 0
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1. x +z +u = 0
5. x +z +u = 0

Given blue vertices: 1 and 2.
Then

2→ 3,
1→ 5,
3→ 4.

Given information: x = y = 0.
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3. =⇒ w = 0.
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Proposition (Kenter and L 2018)
Let G be a graph on the vertex set V . The following are
equivalent:
1. B is a zero forcing set.
2. For any A ∈ S(G ), the columns corresponding to V \ B hides

a lower triangular matrix.
3. For any A ∈ S(G ), the columns corresponding to V \ B are

linearly independent.

Theorem (AIM Work Group 2008)
Let G be a graph on n vertices. Then for any matrix A ∈ S(G ),
n − Z (G ) ≤ rank(A).

Zero forcing and eigenvalue multiplicities 14/38 NSYSU



More zero forcing

I Same argument works for non-symmetric matrices.
I When more information are known on the matrices, the design

of the zero forcing process can be improved.
I For example, nonnegative matrices, zero diagonal entries, or

nonzero diagonal entries.
I They all follow the same philosophy.
I Zero forcing is related to the minimum rank problem (Math),

quantum control (Physics), building logic circuit (Physics), the
graph searching problem (ComS).
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Inverse eigenvalue problem of a graph (IEP-G )

Let G be a graph. Define S(G ) as the family of all real symmetric
matrices A =

[
aij
]
such that

aij


6= 0 if ij ∈ E (G ), i 6= j ;

= 0 if ij /∈ E (G ), i 6= j ;

∈ R if i = j .
? ∗ 0 0
∗ ? ∗ 0
0 ∗ ? ∗
0 0 ∗ ?

 {1, 2, 3, 4}
spec

?

IEP-G : What are the possible spectra of a matrix in S(G )?
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Generic case

Theorem (Monfared and Shader 2013)
Let G be a graph on n vertices and λ1 < · · · < λn distinct real
numbers. Then there is a matrix A ∈ S(G ) such that
spec(A) = {λ1, . . . , λn}.
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Maximum multiplicity

Theorem (AIM Work Group 2008)
Let G be a graph on n vertices. Then or any matrix A ∈ S(G ),
I n − Z (G ) ≤ rank(A),
I null(A) ≤ Z (G ), and
I multλ(A) ≤ Z (G ).

Recall that multλ(A) = null(A− λI ) and A− λI ∈ S(G ) if and
only if A ∈ S(G ).
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Ordered multiplicity list

Suppose the spectrum of a real symmetric matrix A is
{λ(m1)

1 , . . . , λ
(mq)
q }. Then the ordered multiplicity list of A is

(m1, . . . ,mq).

λ1 λ2 λ3 λ5

· · ·

· · ·
eigenvalue

multiplicity

multλ(A) ≤ Z (G )
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IEP-Pn


? ∗
∗ ? ∗

∗ . . . . . .
. . . ∗

∗ ?


Z (Pn) = 1 λ1 < · · · < λn

Hochstadt 1974, Gray and Wilson 1976, and Hald 1976 gave
stronger results.
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IEP-Cn


? ∗ ∗
∗ ? ∗

∗ . . . . . .
. . . ∗

∗ ∗ ?


Z (Cn) = 2

λ1 ≤ λ2 < λ3 ≤ λ4 < · · · , or

λ1 < λ2 ≤ λ3 < λ4 ≤ λ5 < · · ·

For example, (2, 1, 2) is not possible for C5.

Ferguson 1980 proved stronger results, which uses the
eigenvector-eigenvalue identity (see, e.g., DPTZ 2019 for a survey
on this identity).
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IEP-K1,n−1


? ∗ ∗ · · · ∗
∗ ?

∗ . . .
...
∗ ?



Z (K1,n−1) = n − 2

Z+(K1,n−1) = 1

any spectrum with ordered multiplicity list
(m1, . . . ,mq) satisfying mi ≤ n − 2 and
m1 = mq = 1

For example, (1, 2, 1) is achievable for K1,3 but (2, 1, 1) is not.
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PSD zero forcing

I Rule for Z : If for some x , the closed neighborhood NG [x ] are
all blue except for one vertex y and y 6= x , then y turns blue.

I Rule for Z+: Apply the same rule to each component of the
white vertices.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

Theorem (BBFHHSvdDvdH 2010)
Let G be a graph. Then for any matrix A ∈ S(G ) with ordered
multiplicity list (m1, . . . ,mq),

m1 ≤ Z+(G ), and mq ≤ Z+(G ).
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PSD zero forcing

I Rule for Z : If for some x , the closed neighborhood NG [x ] are
all blue except for one vertex y and y 6= x , then y turns blue.

I Rule for Z+: Apply the same rule to each component of the
white vertices.
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I The IEPG for complete graphs are solved. (BLMNSSSY 2013)
I The IEPG for n = 4 are solved. (BNSY 2014)
I The IEPG for n = 5 are solved. (BBFHHLSY 2020)
I The number of distinct eigenvalues for n = 6 are solved.

(BHPRT 2018)
I The ordered multiplicity lists for n = 6 are solved.

(AABBCGKMW 2021)
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IEPG for 3-sun
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? ∗ ∗ ∗
∗ ? ∗ ∗
∗ ∗ ? ∗
∗ ?
∗ ?
∗ ?


Z (G ) = 2

Z+(G ) = 2

any spectrum with ordered multiplicity list
(m1, . . . ,mq) satisfying mi + mi+1 ≤ 3 and
one of m1 and mq is 1

For example, (2, 1, 2, 1) is achievable for G but (1, 2, 2, 1) is not.

This behavior was found BBFHHLSY 2020.
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Why mi +mj ≤ 3?

I Let G be the 3-sun.
I Suppose A ∈ S(G ) has ordered multiplicity list (1, 2, 2, 1).
I Then B = (A− λ2I )(A− λ3I ) has ordered multiplicity list

(4, 2) or (4, 1, 1).
I The graph of B is a multigraph Γ
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I Z+(Γ) = 3, so (4, 2) or (4, 1, 1) are not possible.
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Multigraphs

Let Γ be a multigraph.
If there are two or more edges between vertices i , j , then
I the i , j-entry of a matrix in S(Γ) can be zero or nonzero, and
I j is counted as 2 (or more) neighbors of i , so i → j is not

allowed in zero forcing.
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Graph power

Let G be a simple graph.
A lazy walk from i to j of length r on G is a sequence

i = v0 → v1 → · · · → vr = j

such that vi and vi+1 are adjacent or the same.

Definition
Define Γ(G , r) as the multigraph on V (G ) such that the number of
edges between i , j is the number of lazy walks from i to j of length
r .
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Power zero forcing

Proposition (Kenter and L 2021)
Let A ∈ S(G ) with spectrum {λ(m1)

1 , . . . , λ
(mq)
q }. Then

I B = (A− λi I )(A− λj I ) has nullity mi + mj and is in
S(Γ(G , 2)).

I B = (A− λi I )(A− λi+1I ) has nullity mi + mi+1, is PDS, and
is in S(Γ(G , 2)).

Define Z (r)(G ) = Z (Γ(G , r)) and Z
(r)
+ (G ) = Z+(Γ(G , r)).

Theorem (Kenter and L 2021)
Let A ∈ S(G ) with spectrum {λ(m1)

1 , . . . , λ
(mq)
q }. Then

I mi + mj ≤ Z (2)(G ), and

I mi + mi+1 ≤ Z
(2)
+ (G ).

Similar theorems can be built for other powers.
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Highlights

I Using Z (r) and Z
(r)
+ is enough to get the correct ordered

multiplicity lists for 100/113 graphs on 6 vertices (using the
answers in AABBCGKMW 2021).

I The power zero forcing provides a unified theory for the
following graphs:

G125 G138

G170 G179 G187
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K2,3 and K e
2,3 with a trailing path

e

Theorem (Kenter and L 2021)
Let G be G` or G e

` and A ∈ S(G ). Then the sum of any two
eigenvalue multiplicities of A is at most 4.

Thanks!
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