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Hard to know if the solution exists, or if the solution is unique.

| don’t want to solve it!
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System of linear equations

Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.
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Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.

| like it! ©
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Main philosophy

2x+y+3z=7
x=1ly=2 = z=1

In a linear equation, if all but one variable are known, then
this remaining variable is also known.

2x+y+3z=0
x=0y=0 = z=0

In a homogeneous linear equation, if all but one variable
are zero, then this remaining variable is also zero.
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Hidden triangle in a system

1. x +z +u =0
2 y +z =

3. x 4y 4z 4w +u =0
4 z 4w =0
5. x +z +u =0
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Zero forcing and eigenvalue multiplicities 5/38 NSYSU



Hidden triangle in a system

1. x +z 4+u =0
2. y +z =
3. x 4y +z 4w +u =
4. z 4w =
5. x +z +u =0

Given information: x =y = 0. Then

2. = z=0,
1. = u=0,
3. = w=0.

Zero forcing and eigenvalue multiplicities 5/38 NSYSU



Hidden triangle in a system

2. y +z =0
1. x +z +u =
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Hidden triangle in a system

2. y +z =0
1. x +z +u =
3. x 4y +z 4u 4w =
1. x +z +u =
5. x +z Hu =0

Given information: x =y = 0. Then
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1. = u=0,
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Hidden triangle in a system

2 y +z =0
1. x +z Hu =
3. x 4y +z 4u 4w =
1. x +z Hu =
5. x +z Hu =0

Given information: x =y = 0. Then

2. = z=0,
1. = u=0,
3. = w=0.

As long as the red terms has nonzero coefficients and the
terms are zero, the same argument always works.
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Application to algebra

Find the inverse of a formal power series.

1 42x  +3x®  +4x3  45x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +--
1
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Find the inverse of a formal power series.

1 42x  +3x®  +4x3  +5x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +--

1

1by —1
2by +1b; =0
3byp +2b; +1b =

4bg +3b1 +2by +1b3 =0
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Application to algebra

Find the inverse of a formal power series.

1 42x  +3x®  +4x3  45x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +---

1

1bg =1
2by +1bg =0
3bg +2b; +1bp =

4by +3b1 +2by, +1b3 =0

A formal power series has an inverse if and only if the constant
term is nonzero.
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Electronic circuit

1 1 1
7(\/1 — Vo) -+ f(VQ — Vo) =+ 7(\/3 — Vo) + 6\/0 =0
n r r3
R 2
ra
Vo
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Electronic circuit

1 1 1

—(V1—=W)+ (Vo= Vo) + —(Vza— W) +eVo =0

n r 3
1 1 1 1 1 1
—Vi+ Vot Vs t(e————— —)Wo=0
rn ra r3 rn ra r3

Vi Voo,

V3
Vs, J
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Electronic circuit

1 1 1 1 1 1
—Vi+ Vot -V t(e————— —)Wo=0
n r 3

aaVi+aWVo+a3Vi+agVpg=0

nonzero Z€ero or nonzero

i, Vo o

rn

Vo

oO— 0O
o0 X
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Electronic circuit

aaVi+aVo+a3Vs+ a0V =0

nonzero Z€ero or nonzero

The conservation law leads to a linear equation on each node;
itself and its neighbors represent the variables.

Vi

rn 3

Vo V3
r2
Vs
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How many sensors required to monitor the voltages?

) )
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How many sensors required to monitor the voltages?

e 0 [l sensor
® known
O O O unknown

> Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighborhood).

> If in a closed neighborhood, all but one voltages are known,
then this remaining one are also known.
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Model by graphs and matrices

» A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.
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Model by graphs and matrices

» A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

» The linear equations can be recorded into a matrix; each row

represents a equation, and each column represents an unknown
voltage.

» This is a symmetric matrix where rows and columns are both
indexed by the vertices.
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Let G be a simple graph on n vertices. The family S(G) consists of
all n x n real symmetric matrix M = [M,- ] with

M;j =0 ifi#jand {i,j} is not an edge,
M;j#0 ifi#jand {i,j} is an edge,
/\/I,'J eR ifi =jJ.

010 [1 -1 0 2 010
Sloo)3 |1 0 1|,|-1 2 —1|,|01 1 x|,
010 [0 -1 1 0 7 0
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Zero forcing

Zero forcing process:
» Start with a given set of blue vertices (sensors).
» If for some x, the closed neighborhood Ng[x] are all blue
except for one vertex y and y # x, then y turns blue.
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.
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How to deploy the sensors?
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can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.

Many studies are done on zero forcing and its variation power
domination.
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Hidden triangle revisit

1,x 5, u 1. x +z 4+u =0
2 y +z =
3z 3. x +y 4z +w +u =
4 z +w =
2.y 4w 5. x +z +u =0
Given blue vertices: 1 and 2. Given information: x =y = 0.
Then Then
253, 2. — z=0,
1—5, 1. = u=0,
3—4. 3. = w=
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Hidden triangle revisit

3,z
2,y 4w

Given blue vertices: 1 and 2.

Then
2 — 3,

1—5,
3 — 4.

Zero forcing and eigenvalue multiplicities

Gl = W~ N
X X X X
+
<
+
N

Given information:

Then
2. —

Il

13/38

=0
+u =0
+u +w =
+u =0
+u =
x=y=0
z =0,
u=0,
w =

NSYSU



Proposition (Kenter and L 2018)

Let G be a graph on the vertex set V. The following are
equivalent:

1. B is a zero forcing set.

2. For any A € §(G), the columns corresponding to V' \ B hides
a lower triangular matrix.

3. For any A € §(G), the columns corresponding to V' \ B are
linearly independent.

Theorem (AIM Work Group 2008)

Let G be a graph on n vertices. Then for any matrix A € §(G),
n—Z(G) < rank(A).
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More zero forcing

» Same argument works for non-symmetric matrices.
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More zero forcing

» Same argument works for non-symmetric matrices.

» When more information are known on the matrices, the design
of the zero forcing process can be improved.

» For example, nonnegative matrices, zero diagonal entries, or
nonzero diagonal entries.

» They all follow the same philosophy.

» Zero forcing is related to the minimum rank problem (Math),
quantum control (Physics), building logic circuit (Physics), the
graph searching problem (ComS).
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Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define S(G) as the family of all real symmetric
matrices A = [a,-j] such that

#0 ifije E(G),i#];
ajq=0 ifijje¢ E(G),i# ]

eR ifi=.
7 x 00
* 7 % 0 SPe¢
el 3 Y e
0 0 = 7 :
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Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define S(G) as the family of all real symmetric
matrices A = [a,-j] such that

#0 ifije E(G),i#];
ajq=0 ifijje¢ E(G),i# ]

eR ifi=.
7 % 00
« 7 % 0] P
- 0 % 7 =« <>{172a374}
?
0 0 % 7 '

IEP-G: What are the possible spectra of a matrix in S(G)?
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Generic case

Theorem (Monfared and Shader 2013)

Let G be a graph on n vertices and \1 < --- < )\, distinct real
numbers. Then there is a matrix A € S(G) such that
spec(A) = {A1,..., \n}
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Maximum multiplicity

Theorem (AIM Work Group 2008)

Let G be a graph on n vertices. Then or any matrix A € S(G),
» n— Z(G) < rank(A),
» null(A) < Z(G), and
> multy(A) < Z(G).

Recall that multy(A) = null(A— X/) and A— X\l € S(G) if and
only if Ae S(G).
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Ordered multiplicity list

Suppose the spectrum of a real symmetric matrix A is
{A(lml), e )\E,mq)}. Then the ordered multiplicity list of A is
(my,...,mg).

multiplicity,

e » mult)(A) < Z(G)

— eigenvalue
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IEP-P,

e _
* 7 %
*
*
* 7
Z(P,) =1 A< < Ap

Hochstadt 1974, Gray and Wilson 1976, and Hald 1976 gave
stronger results.
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IEP-C,

o R
Y
*
*
* x 7
MS o< A3 A<, 0

Z(C,) =2
/\1<)\2§)\3<)\4§)\5<"'

For example, (2,1,2) is not possible for Cs.
Ferguson 1980 proved stronger results, which uses the

eigenvector-eigenvalue identity (see, e.g., DPTZ 2019 for a survey
on this identity).
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IEP-Ky 1

7 % x *
x 7

*

* ?

any spectrum with ordered multiplicity list
(m1, ..., mq) satisfying m; < n—2 and
my=mg=1

Z(Kl,n—l) =n-—2
Z+(K17n,1) = 1

For example, (1,2, 1) is achievable for K7 3 but (2,1, 1) is not.
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PSD zero forcing

» Rule for Z: If for some x, the closed neighborhood Ng[x] are

all blue except for one vertex y and y # x, then y turns blue.

» Rule for Z,: Apply the same rule to each component of the
white vertices.

2 5
1 3 6
4 7

Theorem (BBFHHSvdDvdH 2010)
Let G be a graph. Then for any matrix A € S(G) with ordered
multiplicity list (mq, ..., mg),

m < Z.(G), and my < Z_(G).
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o
1 6
40 o7
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PSD zero forcing

» Rule for Z: If for some x, the closed neighborhood Ng[x] are
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20 5
3

1 6
4 0 7

Theorem (BBFHHSvdDvdH 2010)
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o1

20

3

[y
o——O0—=©O0
(®)]

~

4
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» The IEPG for complete graphs are solved. (BLMNSSSY 2013)
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The IEPG for complete graphs are solved. (BLMNSSSY 2013)
The IEPG for n = 4 are solved. (BNSY 2014)
The IEPG for n =5 are solved. (BBFHHLSY 2020)

The number of distinct eigenvalues for n = 6 are solved.
(BHPRT 2018)

» The ordered multiplicity lists for n = 6 are solved.
(AABBCGKMW 2021)
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IEPG for 3-sun

?7 % ok %
x 1 % *
* % 7 *
* ?
* ?
* ?
any spectrum with ordered multiplicity list
Z(G)=2 (m . ' ‘
1,...,Mq) satisfying m; + m;j;1 < 3 and
Z(G)=2 one of my and mg is 1

For example, (2,1,2,1) is achievable for G but (1,2,2,1) is not.

This behavior was found BBFHHLSY 2020.
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Why m; + m; < 37

» Let G be the 3-sun.
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Why m; + m; < 37

» Let G be the 3-sun.
» Suppose A € §(G) has ordered multiplicity list (1,2,2,1).
» Then B = (A — X\2/)(A — A3/) has ordered multiplicity list
(4,2) or (4,1,1).
» The graph of B is a multigraph '
4

1

5
» Z. () =3, so0(4,2) or (4,1,1) are not possible.
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Multigraphs

Let I be a multigraph.
If there are two or more edges between vertices 7, j, then

» the i, j-entry of a matrix in S(I') can be zero or nonzero, and

» j is counted as 2 (or more) neighbors of i, so i — j is not
allowed in zero forcing.

Zero forcing and eigenvalue multiplicities 27/38 NSYSU



Graph power

Let G be a simple graph.
A lazy walk from j to j of length r on G is a sequence

i=v—vi—-—>Vv,=j

such that v; and v;; are adjacent or the same.

Definition

Define (G, r) as the multigraph on V(G) such that the number of
edges between i, j is the number of lazy walks from i to j of length
r.
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Power zero forcing

Proposition (Kenter and L 2021)
Let A € S(G) with spectrum {)\gml), ey /\gmq)}. Then
» B = (A—Xl)(A— \l) has nullity m; + m; and is in
S(r(G,2)).
» B = (A—\I)(A—Xig1l) has nullity m; + mjy1, is PDS, and
is in S(F(G,2)).
Define Z((G) = Z(I(G,r)) and Z\"(G) = Z.(T(G, r)).
Theorem (Kenter and L 2021)
Let A € S(G) with spectrum {)\gml), e ,/\gm")}. Then
> mi+m; < 2(2)(G), and
> m;+ mig < Zf)(G).

Similar theorems can be built for other powers.
Zero forcing and eigenvalue multiplicities 29/38 NSYSU



Highlights

» Using Z(") and Zir) is enough to get the correct ordered
multiplicity lists for 100/113 graphs on 6 vertices (using the
answers in AABBCGKMW 2021).

» The power zero forcing provides a unified theory for the
following graphs:

el
oA &l &

G170 G179 G187
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K>3 and K33 with a trailing path

Theorem (Kenter and L 2021)

Let G be Gy or G and A € S(G). Then the sum of any two
eigenvalue multiplicities of A is at most 4.
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K>3 and K33 with a trailing path

Theorem (Kenter and L 2021)

Let G be Gy or G and A € S(G). Then the sum of any two
eigenvalue multiplicities of A is at most 4.

Thanks!
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