Sign patterns requiring a unique inertia

Jephian C.-H. Lin 林晉宏

Department of Applied Mathematics, National Sun Yat-sen University

May 25, 2019 7th TWSIAM Annual Meeting, Hsinchu, Taiwan

Joint work with

Pauline van den Driessche University of Victoria D. Dale Olesky University of Victoria

Sign pattern

- A sign pattern is a matrix whose entries are in $\{+, -, 0\}$.
- ▶ The qualitative class of a sign pattern $\mathcal{P} = [p_{i,j}]$ is the family of matrices $A = [a_{i,j}]$ such that sign $(a_{i,j}) = p_{i,j}$.

$$Q\left(\begin{bmatrix}+&+&0\\0&-&+\end{bmatrix}\right) \ni \begin{bmatrix}1&2&0\\0&-3&0.5\end{bmatrix}, \begin{bmatrix}5&3&0\\0&-1&\pi\end{bmatrix}, \ldots$$

Require and allow

- Let *P* be a sign pattern.
- Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc.
- ▶ \mathcal{P} requires property *R* if every matrix in $Q(\mathcal{P})$ has property *R*.
- ▶ \mathcal{P} allows property R if at least a matrix in $Q(\mathcal{P})$ has property R.

$$\begin{bmatrix} + & 0 & 0 \\ - & + & 0 \\ 0 & - & + \end{bmatrix}$$
 requires a positive determinant

Require and allow

- Let *P* be a sign pattern.
- Let R be a property of a matrix. E.g., being invertible, being nilpotent, etc.
- ▶ \mathcal{P} requires property *R* if every matrix in $Q(\mathcal{P})$ has property *R*.
- ▶ \mathcal{P} allows property R if at least a matrix in $Q(\mathcal{P})$ has property R.

$$\begin{bmatrix} + & 0 & - \\ - & + & 0 \\ 0 & - & + \end{bmatrix}$$
 allows a positive determinant.

Inertia

Let A be a matrix.

- $n_+(A) =$ number of eigenvalues with positive real part.
- $n_{-}(A) =$ number of eigenvalues with negative real part.
- $n_0(A) =$ number of eigenvalues with zero real part.
- $n_z(A) =$ number of eigenvalues that equals zero.

The inertia of A is the triple $(n_+(A), n_-(A), n_0(A))$.

- < ≣ >

Question:

Which sign pattern requires a unique inertia?

Outlines:

- Motivations from dynamical systems
- Sign patterns requiring a unique inertia

Predator-Prey Model $\frac{dx}{dt} = \alpha x - \beta xy$ $\frac{dy}{dt} = \delta xy - \gamma y$

(pictures from Wikipedia)

Image: A matrix and a matrix

▶ < ≣ ▶

7/22

æ

General form

Let $\mathcal{P} = [p_{i,j}]$ be a sign pattern. Let $x_{i,j}$ be variables for $i, j \in [n]$. The general form of \mathcal{P} is a variable matrix X with

$$(X)_{i,j} = \begin{cases} x_{i,j} & \text{if } p_{i,j} = +; \\ -x_{i,j} & \text{if } p_{i,j} = -; \\ 0 & \text{if } p_{i,j} = 0. \end{cases}$$

$$\mathcal{P} = \begin{bmatrix} + & + \\ - & - \end{bmatrix} \qquad X = \begin{bmatrix} x_{1,1} & x_{1,2} \\ -x_{2,1} & -x_{2,2} \end{bmatrix}$$

Write det $(zI - X) = S_0 z^n - S_1 z^{n-1} + S_2 z^{n-2} + \dots + (-1)^n S_n$. Then each S_k is a multivariate polynomial in $x_{i,j}$'s.

Sign of a polynomial

- Let p be a polynomial.
- p can be expanded into a linear combination of non-repeated monomials.

$$\operatorname{sign}(p) = \begin{cases} 0 & \text{if all coefficients} = 0; \\ + & \text{if all nonzero coefficients} > 0 \text{ and } \operatorname{sign}(p) \neq 0; \\ - & \text{if all nonzero coefficients} < 0 \text{ and } \operatorname{sign}(p) \neq 0; \\ \# & \text{otherwise.} \end{cases}$$

-∢ ≣ ▶

Minor sequence

Let X be the general form a sign pattern P. The minor sequence of P is s₀, s₁,..., s_n, where s_k = sign(S_k).

Theorem (JL, Olesky, and van den Driessche 2018) If $s_n = \#$, then \mathcal{P} does not require a unique inertia. When \mathcal{P} is a 2×2 sign pattern, \mathcal{P} require a unique inertia if and only if $s_2 \neq \#$.

Equivalence conditions

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a sign pattern. The following are equivalent:

- *P* requires a unique inertia.
- \triangleright \mathcal{P} requires a fixed n_0 .
- *P* requires a fixed n_z and a fixed number of nonzero pure imaginary eigenvalues.

Number of nonzero pure imaginary roots

Substitute *z* by *ti* (with $t \neq 0$):

$$p(z) = x^5 + x^4 + 6x^3 + 2x^2 + 9x - 3$$

= $(t^4 - 6t^2 + 9)ti + (t^4 - 2t^2 - 3)$

odd part =
$$x^2 - 6x + 9$$

even part = $x^2 - 2x - 3$

of nonzero pure imaginary roots

 $= 2 \cdot \#$ of common positive roots of the odd and the even parts

For det
$$(zI - X)$$
, even part : $S_0, -S_2, S_4, \ldots$
even part : $S_1, -S_3, S_5, \ldots$

Number of nonzero pure imaginary roots

Substitute z by ti (with $t \neq 0$):

$$p(z) = x^5 + x^4 + 6x^3 + 2x^2 + 9x - 3$$

= $(t^4 - 6t^2 + 9)ti + (t^4 - 2t^2 - 3)$

odd part =
$$x^2 - 6x + 9$$

even part = $x^2 - 2x - 3$

of nonzero pure imaginary roots

 $= 2 \cdot \#$ of common positive roots of the odd and the even parts

For det
$$(zI - X)$$
, even part : $S_0, -S_2, S_4, \ldots$
even part : $S_1, -S_3, S_5, \ldots$

Descartes' rule of signs

Theorem (Descartes' rule of signs)

Suppose $p(x) \neq 0$ is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p(x) has t - 2k positive roots for some $k \geq 0$.

For example

- > $x^2 6x + 9$ has 2 or 0 positive roots, and
- ▶ $x^2 + 0x 4$ has 1 positive root.

[Key: No sign changes, no positive roots!

★ ∃ ► ★ ∃ ►

Descartes' rule of signs

Theorem (Descartes' rule of signs)

Suppose $p(x) \neq 0$ is a polynomial whose coefficients has t sign changes (ignoring the zeros). Then p(x) has t - 2k positive roots for some $k \geq 0$.

For example

>
$$x^2 - 6x + 9$$
 has 2 or 0 positive roots, and

▶
$$x^2 + 0x - 4$$
 has 1 positive root.

[Key: No sign changes, no positive roots!]

・ 同 ト ・ ヨ ト ・ ヨ ト

Resultant

Let $p_1(x) = \sum_{k=0}^{\ell} c_k x^{\ell-k}$ and $p_2(x) = \sum_{k=0}^{m} d_k x^{m-k}$. The Sylvester matrix of p_1 and p_2 is an $(m + \ell) \times (m + \ell)$ matrix

14/22

The resultant of p_1 and p_2 is

$$\mathsf{Res}(p_1,p_2) = \mathsf{det}(S(p_1,p_2)).$$

Theorem

 $\operatorname{Res}(p_1, p_2) = 0$ if and only if p_1 and p_2 have a common factor.

Suppose \mathcal{P} is a sign pattern with general form X.

► Res(P) = Res(even part, odd part) with the two parts from det(zl - X).

The resultant of p_1 and p_2 is

$$\mathsf{Res}(p_1,p_2) = \mathsf{det}(S(p_1,p_2)).$$

Theorem

 $\operatorname{Res}(p_1, p_2) = 0$ if and only if p_1 and p_2 have a common factor.

Suppose \mathcal{P} is a sign pattern with general form X.

▶ $\operatorname{Res}(\mathcal{P}) = \operatorname{Res}(\operatorname{even part}, \operatorname{odd part})$ with the two parts from $\det(zI - X)$.

$$\begin{bmatrix} 0 & x_{1,2} & 0 \\ -x_{2,1} & 0 & -x_{2,3} \\ 0 & -x_{3,2} & x_{3,3} \end{bmatrix},$$

$$S_0(\mathcal{P}) = 1 \qquad S_2(\mathcal{P}) = x_{1,2}x_{2,1} - x_{2,3}x_{3,2}$$

$$S_1(\mathcal{P}) = x_{3,3} \qquad S_3(\mathcal{P}) = x_{1,2}x_{2,1}x_{3,3}$$

$$\operatorname{Res}(\mathcal{P}) = x_{3,3}(x_{1,2}x_{2,1} - x_{2,3}x_{3,2}) - x_{1,2}x_{2,1}x_{3,3}$$

$$= x_{3,3}x_{1,2}x_{2,1} - x_{3,3}x_{2,3}x_{3,2} - x_{1,2}x_{2,1}x_{3,3}$$

$$= x_{3,3}x_{2,3}x_{3,2}.$$

 $sign(Res(\mathcal{P})) = + \implies$ never has common positive roots So, \mathcal{P} does not allow any nonzero pure imaginary eigenvalues.

- ▲圖▶ ▲ 필▶ ▲ 필▶ - - 필 -

Exceptional, not exceptional

A 3 \times 3 sign pattern ${\cal P}$ is in ${\cal E}$ if its minor sequence is [+,#,#,+] or [+,#,#,-]

3 imes 3 sign patterns not in ${\cal E}$

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a 3 × 3 irreducible sign pattern that is not in \mathcal{E} . Then \mathcal{P} requires a unique inertia if and only if

1.
$$s_{k_0} \in \{+, -\}$$
 and $s_k = 0$ for all $k > k_0$ (fixed n_z), and

2. At least one of the following holds: (fixed $n_0 - n_z = 0$)

2.1 $s_2 = -.$ (no sign changes in even part) 2.2 $s_1, s_3 \in \{+, -, 0\}$ and $s_1 \neq s_3$. (no sign changes in odd part) 2.3 Res(\mathcal{P}) has a fixed sign.

Embedded \mathcal{T}_2

$$\begin{aligned} \mathcal{T}_2 &= \begin{bmatrix} + & + \\ - & - \end{bmatrix} \text{ allows two inertias } (2,0,0) \text{ and } (0,2,0) \\ \begin{bmatrix} + & + & 0 \\ - & - & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ allows two inertias } (2,0,1) \text{ and } (0,2,1) \end{aligned}$$

Lemma (JL, Olesky, and van den Driessche 2018) If \mathcal{P} is a 3×3 sign pattern with \mathcal{T}_2 (or \mathcal{T}_2^{\top}) embedded in \mathcal{P} as a principal subpattern, then \mathcal{P} does not require a unique inertia.

$$\begin{bmatrix} 0 & 0 & + \\ - & + & + \\ 0 & - & - \end{bmatrix}$$
 has minor sequence $[+, \#, \#, +]$

 3×3 sign patterns in ${\cal E}$

Theorem (JL, Olesky, and van den Driessche 2018) Let \mathcal{P} be a 3×3 sign pattern in \mathcal{E} . Then \mathcal{P} requires a unique inertia if and only if \mathcal{T}_2 is not embedded in \mathcal{P} as a principal subpattern.

Enumerations

All 2 \times 2 and 3 \times 3 sign patterns are characterized.

 2×2 :

- 8 sign patterns in total
- ▶ 6 UI; 2 not UI

 3×3 :

	UI	not UI	subtotal
not in ${\cal E}$	51	118	169
in ${\cal E}$	12	6	18
subtotal	63	124	187

э

母 🕨 🔸 물 🕨 🗸 물 🕨

Enumerations

All 2 \times 2 and 3 \times 3 sign patterns are characterized.

 2×2 :

- 8 sign patterns in total
- ▶ 6 UI; 2 not UI

 3×3 :

	UI	not UI	subtotal	
not in ${\cal E}$	51	118	169	Thank you
in ${\cal E}$	12	6	18	
subtotal	63	124	187	-

- ∢ ≣ →

References I

D. Cox, J. Little, and D. O'Shea.

Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, 4th edition, 2015.

J. C.-H. Lin, D. D. Olesky, and P. van den Driessche. Sign patterns requiring a unique inertia. Linear Algebra Appl., 546:67-85, 2018.