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Zero forcing

Zero forcing process:

I Start with a given set of blue vertices.

I If for some x , the closed neighbourhood NG [x ] are all blue
except for one vertex y and y 6= x , then y turns blue.

An initial blue set that can make the whole graph blue is called a
zero forcing set. The zero forcing number Z (G ) of a graph G is
the minimum size of a zero forcing set.
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Z (G ) = 1

Z (G ) = 1 if and only if G is a path.
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Z (G ) = n or n − 1

Z (G ) = n =⇒ P2-free Z (G ) = n − 1 =⇒ P3-free

Let G be a graph on n vertices.

I Then Z (G ) = n if and only if G is the union of isolated
vertices.

I And Z (G ) = n − 1 if and only if G is Kr ∪̇ Kn−r , r 6= 1.
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Generalised adjacency matrix

Let G be a simple graph on n vertices. The family S(G ) consists
of all n × n real symmetric matrix M =

[
Mi ,j

]
with

Mi ,j = 0 if i 6= j and {i , j} is not an edge,

Mi ,j 6= 0 if i 6= j and {i , j} is an edge,

Mi ,j ∈ R if i = j .

S( ) 3

0 1 0
1 0 1
0 1 0

 ,
 1 −1 0
−1 2 −1
0 −1 1

 ,
 2 0.1 0

0.1 1 π
0 π 0

 , · · ·
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Why zero forcing?


−2 0 0 7 0
0 1 0 0 −9
0 0 0 3 4
7 0 3 −4 5
0 −9 4 5 0



x1
x2
x3
x4
x5

 =


0
0
0
0
0


1

2

3

4

5

I Pick a matrix A ∈ S(G ) and consider Ax = 0.

I Each vertex represents a variable. Each vertex also represents
an equation where appearing variables are the neighbours and
possibly itself.

I Blue means zero. White means unknown.
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Hidden triangle in a system

1. −2x1 +7x4 = 0
2. 1x2 −9x5 = 0
3. 3x4 +4x5 = 0
4. 7x1 +3x3 −4x4 +5x5 = 0
5. −9x2 +4x3 +5x4 = 0

1

2

3

4

5

Given x1 = x2 = 0,

1. =⇒ x4 = 0,

2. =⇒ x5 = 0,

4. =⇒ x3 = 0.

Given 1 and 2 blue,

1→ 4,

2→ 5,

4→ 3.
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Hidden triangle in a system

1. 7x4 0 0 −2x1 = 0
2. −9x5 0 +1x2 = 0
4. −4x4 +5x5 +3x3 +7x1 = 0
3. 3x4 +4x5 = 0
5. 5x4 +4x3 −9x2 = 0

1

2

3

4

5

Given x1 = x2 = 0,

1. =⇒ x4 = 0,

2. =⇒ x5 = 0,

4. =⇒ x3 = 0.

Given 1 and 2 blue,

1→ 4,

2→ 5,

4→ 3.

As long as the red terms has nonzero coefficients and the orange
terms are zero, the same argument always works.
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Triangle number

I A pattern is a matrix whose entries are in {0, ∗, ?}.
I A triangle is a submatrix of a pattern that can be permuted to

a lower triangular matrix with ∗ on the diagonal.
? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


0 ∗ 0

0 0 ∗
∗ ? ∗

→
∗ 0 0

0 ∗ 0
? ∗ ∗

 triangle
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a lower triangular matrix with ∗ on the diagonal.
? 0 0 ∗ 0
0 ? 0 0 ∗
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0 0 ∗
∗ ? ∗
0 ∗ ?

→
∗ 0 0

? ∗ 0
∗ ? ∗

 triangle

I The triangle number tri(P) of a pattern P is the largest size
of a triangle in P.

I Define tri(G ) = tri(P), where P is the pattern of the
generalized adjacency matrix of G .
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Triangle number and zero forcing

Theorem
For any simple graph G on n vertices, tri(G ) = n − Z (G ).

Proof.
Record all the forces in order. Find the rows of the “forc-ers”, find
the columns of the “forc-ees”, then you find the triangle.

? 0 0 ∗ 0
0 ? 0 0 ∗
0 0 ? ∗ ∗
∗ 0 ∗ ? ∗
0 ∗ ∗ ∗ ?


1→ 4
2→ 5
4→ 3

1

2

3

4

5
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Proposition (Kenter and L 2018)

Let G be a graph on the vertex set V . The following are
equivalent:

1. B is a zero forcing set.

2. For any A ∈ S(G ), the columns corresponding to V \ B hides
a lower triangular matrix.

3. For any A ∈ S(G ), the columns corresponding to V \ B are
linearly independent.

Theorem (AIM Work Group 2008)

Let G be a graph on n vertices. For any matrix A ∈ S(G ),
n − Z (G ) ≤ rank(A).
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Corollary tridiagonal

Corollary

Any symmetric irreducible tridiagonal matrix has all its eigenvalues
distinct. 

? ∗ 0 · · · 0

∗ ? ∗ . . .
...

0 ∗ . . .
. . . 0

...
. . .

. . . ∗
0 · · · 0 ∗ ?


Proof.
For any A ∈ S(Pn), null(A) ≤ Z (Pn) = 1 and
null(A− λI ) ≤ Z (Pn) = 1.
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Z (G )− 1 ≤ Z (G − v) ≤ Z (G ) + 1

Z (G ) = 1 Z (G − v) = 1

Z (G ) = 2 Z (G − v) = 1

Z (G ) = 2 Z (G − v) = 3
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tri(G ) is induced subgraph monotone

I If H is an induced subgraph of G , then tri(H) ≤ tri(G ).

I For each k , let Forbtri(G)≤k be the set of minimal induced
subgraph of {H : tri(H) ≥ k + 1}.

I Then tri(G ) ≤ k if and only if G is Forbtri(G)≤k -free.

Forbtri(G)≤0 = {P2}

Forbtri(G)≤1 = {P3, 2P2}

Forbtri(G)≤2 = {P4, , ,P2 ∪̇ P3, 3P2}
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.

α

β

|α|, |β| = k + 1
|α ∪ β| ≤ 2k + 2
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Is |Forbtri(G)≤k | always finite?

Proposition

Any graph with tri(G ) ≥ k + 1 contains an induced subgraph with
tri(G ) ≥ k + 1 and of order at most 2k + 2.

α

β

|α|, |β| = k + 1
|α ∪ β| ≤ 2k + 2

Corollary

Any graph in Forbtri(G)≤k has order at most 2k + 2.
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Forbtri(G)≤0 = {P2}

Forbtri(G)≤1 = {P3, 2P2}

Forbtri(G)≤2 = {P4, , ,P2 ∪̇ P3, 3P2}

Forbtri(G)≤3 = {19 connected, 6 disconnected}

|Forbtri(G)≤4| = 263, . . .
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