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System of linear equations
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System of linear equations

Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.

| like it! ©
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Main philosophy

2x+y+3z=7
x=1ly=2 = z=1

In a linear equation, if all but one variable are known, then
this remaining variable is also known.

2x+y+3z=0
x=0y=0 = z=0

In a homogeneous linear equation, if all but one variable
are zero, then this remaining variable is also zero.
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Hidden triangle in a system

1. x +z +u =0
2 y +z =

3. x 4y 4z 4w +u =0
4 z 4w =0
5. x +z +u =0
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Hidden triangle in a system

2 y +z =0
4 z 4w =
3. x 4y +z 4w +u =
1. x +z +u =
5. x +z +u =0

Given information: x =y = 0. Then
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Hidden triangle in a system

2. y +z =0
4. z 4w =
3. x 4y +z 4w +u =
1. x +z +u =
5. x +z +u =0

Given information: x =y = 0. Then

2. = z=0,
4, — w =0,
3. = u=0.

As long as the red terms has nonzero coefficients and the
terms are zero, the same argument always works.
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Application to algebra

Find the inverse of a formal power series.

1 42x  +3x®  +4x3  45x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +--
1
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Find the inverse of a formal power series.

1 42x  +3x®  +4x3  +5x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +--

1

1by —1
2by +1b; =0
3byp +2b; +1b =

4bg +3b1 +2by +1b3 =0
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Application to algebra

Find the inverse of a formal power series.

1 42x  +3x®  +4x3  45x* ...
X) bo +b1X +b2X2 +b3X3 +b4X4 +---

1

1bg =1
2by +1bg =0
3bg +2b; +1bp =

4by +3b1 +2by, +1b3 =0

A formal power series has an inverse if and only if the constant
term is nonzero.
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Electronic circuit

1 1 1
7(\/0 — Vl) -+ 7(\/0 — V2) = f(Vg — Vo) —|—€V0
n r r

i, Vo 5

rn

Vs

O—O
o0 X
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Electronic circuit

1 1 1

(Vo —-V1)+ (Vo — V2) = (V5= W) + eV
rn r2 r3

1 1 1 1 1 1
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Electronic circuit

1 1 1 1 1 1
—Vi+ Vot -V t(e————— —)Wo=0
n r 3

aaVi+aWVo+a3Vi+agVpg=0

nonzero Z€ero or nonzero

i, Vo o

rn

Vo

oO— 0O
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Electronic circuit

aaVi+aVo+a3Vs+ a0V =0

nonzero Z€ero or nonzero

The conservation law leads to a linear equation on each node;
itself and its neighbours represent the variables.

Vi

rn 3

Vo V3
r2
Vs
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How many sensors required to monitor the voltages?

) )
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How many sensors required to monitor the voltages?

e 0 [l sensor
® known
O O O unknown

> Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

o e [l sensor
® known
O O O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

o e [l sensor
® known
O O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

e [l sensor
® known
O O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

e [l sensor

® known

O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

[l sensor

® known

O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

[l sensor

® known

O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



How many sensors required to monitor the voltages?

[l sensor

® known

O unknown

» Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

» If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.

Zero forcing and its applications 8/35 NSYSU



Model by graphs and matrices

» A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

Zero forcing and its applications 9/35 NSYSU



Model by graphs and matrices

» A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.
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Model by graphs and matrices

» A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

» The linear equations can be recorded into a matrix; each row

represents a equation, and each column represents an unknown
voltage.

» This is a symmetric matrix where rows and columns are both
indexed by the vertices.
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Let G be a simple graph on n vertices. The family S(G) consists of
all n x n real symmetric matrix M = [M,- ] with

M;j =0 ifi#jand {i,j} is not an edge,
M;j#0 ifi#jand {i,j} is an edge,
/\/I,'J eR ifi =jJ.

010 [1 -1 0 2 010
Sloo)3 |1 0 1|,|-1 2 —1|,|01 1 x|,
010 [0 -1 1 0 7 0
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Zero forcing

Zero forcing process:
» Start with a given set of blue vertices (sensors).
» If for some x, the closed neighbourhood Ng[x] are all blue
except for one vertex y and y # x, then y turns blue.
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.
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details of the network.
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.

Many studies are done on zero forcing and its variation power
domination.
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Proposition (Kenter and L 2018)

Let G be a graph on the vertex set V. The following are
equivalent:

1. B is a zero forcing set.

2. For any A € §(G), the columns corresponding to V' \ B hides
a lower triangular matrix.

3. For any A € §(G), the columns corresponding to V' \ B are
linearly independent.

Theorem (AIM Work Group 2008)

Let G be a graph on n vertices. For any matrix A € S(G),
n—Z(G) < rank(A).
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More zero forcing

» Same argument works for non-symmetric matrices.
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More zero forcing

» Same argument works for non-symmetric matrices.

» When more information are known on the matrices, the design
of the zero forcing process can be improved.

» For example, nonnegative matrices, zero diagonal entries, or
nonzero diagonal entries.

» They all follow the same philosophy.

» Zero forcing is related to the minimum rank problem (Math),
quantum control (Physics), building logic circuit (Physics), the
graph searching problem (ComS).
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Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define S(G) as the family of all real symmetric
matrices A = [a,-j] such that

#0 ifije E(G),i#];
ajq=0 ifijje¢ E(G),i# ]

eR ifi=.
7 x 00
* 7 % 0 SPe¢
el 3 Y e
0 0 = 7 :
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Inverse eigenvalue problem of a graph (IEP-G)

Let G be a graph. Define S(G) as the family of all real symmetric
matrices A = [a,-j] such that

#0 ifije E(G),i#];
ajq=0 ifijje¢ E(G),i# ]

eR ifi=.
7 % 00
« 7 % 0] P
- 0 % 7 =« <>{172a374}
?
0 0 % 7 '

IEP-G: What are the possible spectra of a matrix in S(G)?
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Supergraph Lemma

Lemma (BFHHLS 2017)

Let H be a spanning subgraph of G. If A€ S(H) has the strong
spectral property (SSP), then there is a matrix B € S(G) such that

» spec(A) = spec(B),
» B has the SSP, and

» ||B — A|| can be chosen arbitrarily small.

1 000 ~1 € 0 0
0 200 € ~2 € 0
0 0 30 0 e ~3 €
0 00 4 0 0 e ~4

SSP will be defined later
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Entrywise product o

Ao X =0

)
(X)ij # 0 only when (A);; =0
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JoX =0
i}

X is zero on the diagonal

Let A€ S(G). Then

AoX=0and /o X =0

)
(X)ij # 0 only when ij ¢ E(G)
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Strong spectral property (SSP)

Definition
A matrix A has the strong spectral property (SSP) if X = O is the
only real symmetric matrix that satisfies the following matrix
equations:

> Ao X =0,l0X =0,

> AX — XA = 0.

Examples of matrices with the SSP:

1111 1 000 0100
1111 0200 1010
111 1’(0 03 0{"|0 1 01
1111 0 0 0 4 0010
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Strong spectral property (SSP)

Definition
A matrix A has the strong spectral property (SSP) if X = O is the
only real symmetric matrix that satisfies the following matrix
equations:

> Ao X =0,l0X =0,

> AX — XA = 0.

Examples of matrices with the SSP:

1111 1 000 0100
1111 0200 1010
111 1’(0 03 0{"|0 1 01
1111 0 0 0 4 0010

Here we use the notation [A, X] for AX — XA.
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Example of A € S(Py)

Let
0100 0 0 x y
1 010 0 0 0 z
A=lo 10 1] ™X=|x 0 0 0
0010 y z 0 0
Then
0 —X -y —Xx+z
AXx]=| "~ 0 x—z v | _o
—X+z 0 z
X—2z -y —z 0
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Example of A € S(Py)

Let
0100 0 0 x y
1 010 0 0 0 z
A=lo 10 1] ™X=|x 0 0 0
0010 y z 0 0
Then
0 —X -y —Xx+z
AXx]=| "~ 0 x—z v | _o
—X+z 0 z
X—2z -y —z 0

= x=0,z=0,y=0 = X=0
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A € §(Ps) always has the SSP

Let
d a2 0 0 0 0 x y
_laiz d a3 O 10 0 0 =z
A= 0 dan3 d3 ds3a and X = x 0 0 O
0 0 ds34 d4 y z 0 0
Then [A, X] =
0 —dan3X ?x—a34y ?
? 0 ? apy+7?z —0
? ? 0 ani3z o
? 7 7 0
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Example of A € S(K3)

Let
0111 0 00O
{1 000 |0 0 x vy
A=11 00 of ™MX=1]0 x 0 2
1 000 0y z O
Then [A, X] =
_O_ xqu XBLZ ygz 0 1 17 x
x—Y — O implies |1 0 1| |y| =0
—X—Z 0 0 0 11 0l |z
-y —z 0 0 0
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Example of A € S(K3)

Let
0111 0 00O
{1 000 |0 0 x vy
A=11 00 of ™MX=1]0 x 0 2
1 000 0y z O
Then [A, X] =
_O_ xqu XBLZ ygz 0 1 17 x
x—Y — O implies |1 0 1| |y| =0
—X—Z 0 0 0 11 0l |z
-y —z 0 0 0

— x=0,y=0,z=0 —= X=0
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A € S(Ki3) always has the SSP

Let
di apx a3 au 0000
. a1 d2 0 0 . 0 0 x y
A= d13 0 d3 0 and X' = 0 x 0 z
aia 0 0 d4 0 y z 0
0 ai3x+awy apx+awz apy+ azz
? 0 ? ?
Then [4,X] = |} 0 ! ~0
? 0

?
?
0 a1 X
implies |a;» 0 a14 y| =
z

a3 a4
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A € S(Ki3) always has the SSP

Let
di apx a3 au 0000
. a1 d2 0 0 . 0 0 x y
A= d13 0 d3 0 and X' = 0 x 0 z
aia 0 0 d4 0 y z 0
0 ai3x+awgy ax+awuz apy+ a3z
? 0 ? ?
Then [A, X] = 5 ? 0 ? =0
? ? 0
0 ap X X
implies |a;» 0 a14 y|l=0= |y| =0 = X=0
d13 4ai4 z z
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Verification of the SSP

> Let A€ S(G).
» Let Ej = 0, 1-matrix with two ones on ij and ji.

AX = XA= Y xj(AEj — EjA) =0
ij€E(G)
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Verification of the SSP

> Let Ae S(G).

» Let Ej = 0, 1-matrix with two ones on ij and ji.
AX = XA= Y xj(AEj — EjA) =0
jEE(G)

Verification:

A has the SSP <= {AE; — E;A} is linearly independent

UEE
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Verification matrix

Let vec,(M) be the vector that records the off-diagonal entries of a
skew-symmetric matrix M.

0 1 2 3
-1 0 4 5| vec,

5 4 0 g 21 2345 ¢
-3 -5 —6 0

Definition -
Let A€ S(G) and p = |E(G)|. The SSP verification matrix Wg(A)

of Ais a p x () matrix whose rows are composed of

vec,(AEj; — EjjA) for ij € E(G).
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Verification matrix

Let vec,(M) be the vector that records the off-diagonal entries of a
skew-symmetric matrix M.

0 1 2 3
-1 0 4 5| vec,

5 4 0 g 21 2345 ¢
-3 -5 —6 0

Definition
Let A€ S(G) and p = |E(G)|. The SSP verification matrix Wg(A)

of Ais a p x () matrix whose rows are composed of

vec,(AEj; — EjjA) for ij € E(G).

A has the SSP <= Wg(A) has full row-rank.
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Key idea

The verification matrix always has full row-rank if the green parts
are always invertible and the white part is zero.
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Forcing process: general setting

Let G be a graph.
» Each edge on G is considered as “black”.

» Each non-edge of G is initially white but can possibly be blue
in the process.

» Color change rules will be defined later.
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Forcing process: general setting

Let G be a graph.
» Each edge on G is considered as “black”.

» Each non-edge of G is initially white but can possibly be blue
in the process.

» Color change rules will be defined later.

Theorem (L, Oblak, and Smigoc 2020)

If starting with all white and ending with all non-edge blue, then
every A € S(G) has the SSP.
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Forcing process: Rule 1

If
» ik is black or blue, and
> there is a unique black-white connection
i o/j) o k o i O ?\o k
between i and k (say the former case)

then jk turns blue.

A A,

Zero forcing and its applications 28/35 NSYSU



Forcing process: Rule 2

If
» G[N(v)] contains a white odd cycle C as a component, and

> there are exactly two black-white connection between v and
each vertex on C,

then the edges in E(C) turn blue.
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Forcing process: Rule 3

If
» G contains an induced subgraph Y},

> edges in E(Y/) are blue, edges in E(Y,Sh+1)) are white, and
> there are exactly two black-white connections between the two
endpoints of each edge in E( Y,Sh)),

then the edges in E(Y,Sh+1)) turn blue.

Y3 with E(Y3) blue
and E(Y3(4)) white

NSYSU
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Graphs that guarantee the SSP

For the following graphs G, every A € S(G) has the SSP.

path lollipop

oo ool

trees with three pending paths

A

This includes all graphs with g(G) = n— 1.
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