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System of linear equations

2x +3y −z = 4
x −y +2z = 3

−3x +2y +z = 2

Hard to know if the solution exists, or if the solution is unique.

I don’t want to solve it!
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System of linear equations

2x +y −z = 1
2y = 4

+2y +3z = 7

Easy to see y = 2, then z = 1, and then x = 0.
Easy to know the solution exists and is unique.

I like it! ,
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Main philosophy

2x + y + 3z = 7

x = 1, y = 2 =⇒ z = 1

In a linear equation, if all but one variable are known, then
this remaining variable is also known.

2x + y + 3z = 0

x = 0, y = 0 =⇒ z = 0

In a homogeneous linear equation, if all but one variable
are zero, then this remaining variable is also zero.
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Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
4. =⇒ w = 0,
3. =⇒ u = 0.

Zero forcing and its applications 5/35 NSYSU



Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
4. =⇒ w = 0,
3. =⇒ u = 0.

Zero forcing and its applications 5/35 NSYSU



Hidden triangle in a system

1. x +z +u = 0
2. y +z = 0
3. x +y +z +w +u = 0
4. z +w = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
4. =⇒ w = 0,
3. =⇒ u = 0.

Zero forcing and its applications 5/35 NSYSU



Hidden triangle in a system

2. y +z = 0
4. z +w = 0
3. x +y +z +w +u = 0
1. x +z +u = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
4. =⇒ w = 0,
3. =⇒ u = 0.

Zero forcing and its applications 5/35 NSYSU



Hidden triangle in a system

2. y +z +0 +0 = 0
4. z +w +0 = 0
3. x +y +z +w +u = 0
1. x +z +u = 0
5. x +z +u = 0

Given information: x = y = 0. Then

2. =⇒ z = 0,
4. =⇒ w = 0,
3. =⇒ u = 0.

As long as the red terms has nonzero coefficients and the orange
terms are zero, the same argument always works.
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 = 1
2b0 +1b1 = 0
3b0 +2b1 +1b2 = 0
4b0 +3b1 +2b2 +1b3 = 0

...
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Application to algebra

Find the inverse of a formal power series.

1 +2x +3x2 +4x3 +5x4 + · · ·
×) b0 +b1x +b2x

2 +b3x
3 +b4x

4 + · · ·
1

1b0 +0 +0 +0 +0 = 1
2b0 +1b1 +0 +0 +0 = 0
3b0 +2b1 +1b2 +0 +0 = 0
4b0 +3b1 +2b2 +1b3 +0 = 0

...

A formal power series has an inverse if and only if the constant
term is nonzero.
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Electronic circuit

1
r1

(V0 − V1) +
1
r2

(V0 − V2) =
1
r3

(V3 − V0) + εV0
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Electronic circuit
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Electronic circuit

a1V1 + a2V2 + a3V3
nonzero

+ a0V0
zero or nonzero

= 0

The conservation law leads to a linear equation on each node;
itself and its neighbours represent the variables.

V0V1

V2

V3r1

r2

r3
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How many sensors required to monitor the voltages?

I Each vertex represents a linear equation; variables are itself
and its neighbors (closed neighbourhood).

I If in a closed neighbourhood, all but one voltages are known,
then this remaining one are also known.
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Model by graphs and matrices

I A electronic circuit can be represented by a graph; each vertex
represents a node, and each edge represents a connection.

I The linear equations can be recorded into a matrix; each row
represents a equation, and each column represents an unknown
voltage.

I This is a symmetric matrix where rows and columns are both
indexed by the vertices.
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Let G be a simple graph on n vertices. The family S(G ) consists of
all n × n real symmetric matrix M =

[
Mi ,j

]
with

Mi ,j = 0 if i 6= j and {i , j} is not an edge,
Mi ,j 6= 0 if i 6= j and {i , j} is an edge,
Mi ,j ∈ R if i = j .

S( ) 3

0 1 0
1 0 1
0 1 0

 ,
 1 −1 0
−1 2 −1
0 −1 1

 ,
 2 0.1 0
0.1 1 π
0 π 0

 , · · ·
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Zero forcing

Zero forcing process:
I Start with a given set of blue vertices (sensors).
I If for some x , the closed neighbourhood NG [x ] are all blue

except for one vertex y and y 6= x , then y turns blue.
An initial blue set that can make the whole graph blue is called a
zero forcing set. The zero forcing number Z (G ) of a graph G is the
minimum size of a zero forcing set.

sensor

known

unknown
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How to deploy the sensors?

Any zero forcing set is a good deployment of sensors that
can monitor the whole graph.

The zero forcing number is the minimum number of sensors
required.

Zero forcing sets suggest a good deployment before knowing the
details of the network.

Many studies are done on zero forcing and its variation power
domination.
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Proposition (Kenter and L 2018)
Let G be a graph on the vertex set V . The following are
equivalent:
1. B is a zero forcing set.
2. For any A ∈ S(G ), the columns corresponding to V \ B hides

a lower triangular matrix.
3. For any A ∈ S(G ), the columns corresponding to V \ B are

linearly independent.

Theorem (AIM Work Group 2008)
Let G be a graph on n vertices. For any matrix A ∈ S(G ),
n − Z (G ) ≤ rank(A).
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More zero forcing

I Same argument works for non-symmetric matrices.
I When more information are known on the matrices, the design

of the zero forcing process can be improved.
I For example, nonnegative matrices, zero diagonal entries, or

nonzero diagonal entries.
I They all follow the same philosophy.
I Zero forcing is related to the minimum rank problem (Math),

quantum control (Physics), building logic circuit (Physics), the
graph searching problem (ComS).
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Inverse eigenvalue problem of a graph (IEP-G )

Let G be a graph. Define S(G ) as the family of all real symmetric
matrices A =

[
aij
]
such that

aij


6= 0 if ij ∈ E (G ), i 6= j ;

= 0 if ij /∈ E (G ), i 6= j ;

∈ R if i = j .
? ∗ 0 0
∗ ? ∗ 0
0 ∗ ? ∗
0 0 ∗ ?

 {1, 2, 3, 4}
spec

?

IEP-G : What are the possible spectra of a matrix in S(G )?
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Supergraph Lemma

Lemma (BFHHLS 2017)
Let H be a spanning subgraph of G . If A ∈ S(H) has the strong
spectral property (SSP), then there is a matrix B ∈ S(G ) such that
I spec(A) = spec(B),
I B has the SSP, and
I ‖B − A‖ can be chosen arbitrarily small.

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4



∼ 1 ε 0 0
ε ∼ 2 ε 0
0 ε ∼ 3 ε
0 0 ε ∼ 4


SSP will be defined later
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Entrywise product ◦

A ◦ X = O

m

(X )ij 6= 0 only when (A)ij = 0
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I ◦ X = O

m

X is zero on the diagonal

Let A ∈ S(G ). Then

A ◦ X = O and I ◦ X = O

m

(X )ij 6= 0 only when ij /∈ E (G )
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Strong spectral property (SSP)

Definition
A matrix A has the strong spectral property (SSP) if X = O is the
only real symmetric matrix that satisfies the following matrix
equations:
I A ◦ X = O, I ◦ X = O,
I AX − XA = O.

Examples of matrices with the SSP:
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 ,

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


Here we use the notation [A,X ] for AX − XA.
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Example of A ∈ S(P4)

Let

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 and X =


0 0 x y
0 0 0 z
x 0 0 0
y z 0 0

 .
Then

[A,X ] =


0 −x −y −x + z
x 0 x − z y
y −x + z 0 z

x − z −y −z 0

 = O.

=⇒ x = 0, z = 0, y = 0 =⇒ X = O
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A ∈ S(P4) always has the SSP

Let

A =


d1 a12 0 0
a12 d2 a23 0
0 a23 d3 a34
0 0 a34 d4

 and X =


0 0 x y
0 0 0 z
x 0 0 0
y z 0 0

 .
Then [A,X ] =

0 −a23x ?x − a34y ?
? 0 ? a12y+?z
? ? 0 a23z
? ? ? 0

 = O.

=⇒ x = 0, z = 0, y = 0 =⇒ X = O
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Example of A ∈ S(K1,3)

Let

A =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 and X =


0 0 0 0
0 0 x y
0 x 0 z
0 y z 0

 .
Then [A,X ] =

0 x + y x + z y + z
−x − y 0 0 0
−x − z 0 0 0
−y − z 0 0 0

 = O implies

0 1 1
1 0 1
1 1 0

xy
z

 = 0

=⇒ x = 0, y = 0, z = 0 =⇒ X = O
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A ∈ S(K1,3) always has the SSP

Let

A =


d1 a12 a13 a14
a12 d2 0 0
a13 0 d3 0
a14 0 0 d4

 and X =


0 0 0 0
0 0 x y
0 x 0 z
0 y z 0

 .

Then [A,X ] =


0 a13x + a14y a12x + a14z a12y + a13z
? 0 ? ?
? ? 0 ?
? ? ? 0

 = O

implies

 0 a12 a13
a12 0 a14
a13 a14 0

xy
z

 = 0 =⇒

xy
z

 = 0 =⇒ X = O
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a12 d2 0 0
a13 0 d3 0
a14 0 0 d4

 and X =


0 0 0 0
0 0 x y
0 x 0 z
0 y z 0

 .

Then [A,X ] =


0 a13x + a14y a12x + a14z a12y + a13z
? 0 ? ?
? ? 0 ?
? ? ? 0

 = O

implies

 0 a12 a13
a12 0 a14
a13 a14 0

xy
z

 = 0 =⇒

xy
z

 = 0 =⇒ X = O
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Verification of the SSP

I Let A ∈ S(G ).
I Let Eij = 0, 1-matrix with two ones on ij and ji .
I Define X =

∑
ij∈E(G) xijEij .

AX − XA =
∑

ij∈E(G)

xij(AEij − EijA) = O

Verification:

A has the SSP ⇐⇒ {AEij − EijA}ij∈E(G) is linearly independent
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Verification matrix

Let veco(M) be the vector that records the off-diagonal entries of a
skew-symmetric matrix M.

0 1 2 3
−1 0 4 5
−2 −4 0 6
−3 −5 −6 0

 veco−−→
[
1 2 3 4 5 6

]

Definition
Let A ∈ S(G ) and p = |E (G )|. The SSP verification matrix ΨS(A)
of A is a p ×

(n
2

)
matrix whose rows are composed of

veco(AEij − EijA) for ij ∈ E (G ).

A has the SSP ⇐⇒ ΨS(A) has full row-rank.
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Key idea

The verification matrix always has full row-rank if the green parts
are always invertible and the white part is zero.

a1 ?
0 a2

0 a3 a4
a3 0 a5
a4 a5 0
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Forcing process: general setting

Let G be a graph.
I Each edge on G is considered as “black”.
I Each non-edge of G is initially white but can possibly be blue

in the process.
I Color change rules will be defined later.

Theorem (L, Oblak, and Šmigoc 2020)
If starting with all white and ending with all non-edge blue, then
every A ∈ S(G ) has the SSP.
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Forcing process: Rule 1

If
I ik is black or blue, and
I there is a unique black-white connection

i j k or i j k

between i and k (say the former case)
then jk turns blue.

i kj i kj
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Forcing process: Rule 2

If
I G [N(v)] contains a white odd cycle C as a component, and
I there are exactly two black-white connection between v and

each vertex on C ,
then the edges in E (C ) turn blue.

v

C

...
v

C

...
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Forcing process: Rule 3

If
I G contains an induced subgraph Yh,
I edges in E (Y h

h ) are blue, edges in E (Y
(h+1)
h ) are white, and

I there are exactly two black-white connections between the two
endpoints of each edge in E (Y

(h)
h ),

then the edges in E (Y
(h+1)
h ) turn blue.

Y3 with E (Y 3
3 ) blue

and E (Y
(4)
3 ) white
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Graphs that guarantee the SSP

For the following graphs G , every A ∈ S(G ) has the SSP.

path lollipop

trees with three pending paths

This includes all graphs with q(G ) = n − 1.
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GIF version

Thanks!
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