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How to find the components?

G
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How to find the components?
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© Breadth-first search © Laplacian matrix
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How to find the clusters?

Go
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How to find the clusters?
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Known for
@ algebraic connectivity,
o Fiedler vector,

@ and more.
Have impact on
@ graph partition,

@ spectral clustering,

: 2 @ image segmentation,
Miroslav Fiedler
1926-2015

@ and more.

Source: MacTutor https://mathshistory.st-andrews.ac.uk/Biographies/Fiedler/
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Laplacian matrix
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Definition

Let G be a graph on n vertices. The Laplacian matrix of G is the n x n
matrix L(G) = [¢; ;] such that

bij = §degg(i) ifi=j,
0 otherwise.
.
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Laplacian matrix

1 -1 0 0 O
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Proposition
Q@ L1=0.

Q x'Lx= > tijyer(®i — x;)%, which means L is PSD.
Q ILx=0 < x'Lx=0.

Example
For G = K2 U Kg,

xLx = (a:l = £C2)2 + (3}3 = 1‘4)2 + (x4 — x5)2 + (.1‘3 = x5)2.
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Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)

Let G be a graph and L = L(G). Then null(L) is the number of
components of G, and

ker(L) = span{ox,,...,dx,},

where X1, ..., X}, are the vertex sets of the components of G.

Example

For G:KQUKg,

spec(L) = {0,0,2,3,3} and ker(L) = span

loocoor
=== O O
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15 05 05
spec(L) = {0,0,0,5,...} and ker(L) =spanq (05|, [15], |05
05 05 15
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Weighted Laplacian matrix

1 -1 0 0 0
(4) 1 11 —01 0 0
) @‘ 01 21 -1 -1
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0 1

Definition

o o O

Let G be a weighted graph on n vertices with weights w; ;. The weighted
Laplacian matrix of G is the n x n matrix L(G) = [(; ;] such that

_wi,j If {Zaj} € E(G)a
bij = Dpes Wik 1T i =7,
0 otherwise.
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Weighted Laplacian matrix

(4) 1 11 -01 0 0
) @‘ 01 21 -1 -1
(5) 0o -1 2 -1

Proposition
Q@ L1=0.
Q x'Lx= > (i jrer Wi (Ti — zj)?, which means L is PSD.

QO Ix=0 < x'Lx=0.

o O O

Example
For G = Ky U K3+ {2,3},

XTLX = (:Cl — x2)2 + (.Tg — 1‘4)2 + (33'4 — x5)2 -+ (Ig — x5)2 + 0.1(1’2 — 3;'3)2.

™ = Tyt
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Count the number of components by the Laplacian matrix

Theorem (Fiedler 1973, Anderson and Morley 1971)

Let G be a graph and L = L(G). Then null(L) is the number of
components of G, and

ker(L) = span{ox,,...,dx,},

where X1, ..., X}, are the vertex sets of the components of G.

Example

For G = Ko U K3+ {2,3},

spec(L) = {0,0.08,2.05,3,3.07} and ker(L) = span

e e e
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Ga

spec(L) = {0,0.02,0.06,5, ...} and ker(L) = {1}.
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Just a small perturbation: first few eigvals and eigvecs
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Count the number of clusters by the Laplacian matrix

Theorem

Let G be a weighted graph and L = L(G). Then the number of zeroish
eigenvalues suggests the number of clusters of G, and vertices in the same
cluster share similar values in each eigenvector.

Example
For G = Ko U K3+ {2,3},

0.45 0.57
0.45 0.52
spec(L) = {0,0.08,2.05,3,3.07} and 0,0.08 — [0.45|, [0.35
0.45 0.37
0.45 0.37
SC: Theory and Practice July 12, 2024 12/20



Spectral embedding algorithm

Algorithm

Input: a weighted graph G on n vertices and a targeted dimension d
Output: an n X d matrix Y
Steps: @ L+ L(G).
@ Find the first d eigenvalues \y < --- < A\q and the
corresponding eigenvectors uy, . .., uy.
© Y <« the matrix composed of columns uy, ..., uy.

Q Letyy,...,yn be the rows of Y. Define the embedding
f:V(G) =R byirsy;.

Remark

© Since u; = ﬁl, people often take Ao < .-+ < Agy1 and their

eigenvectors instead.
© Main idea: The embedding try to put adjacent vertices together—the
stronger the weight, the closer they are.
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3
4 5
2 -1 -1 0 O —-0.09 —0.63
-1 2 0 0 -1 —-0.62 —-0.11
L=|-1 0 2 -1 0| —=Y=|057 -0.28
o o0 -1 2 -1 0.44 045
0o -1 0 -1 2 —0.29 0.56
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4 5

The spectral embedding algorithm occurs in
e graph drawing (Hall 1970, Koren 2005),
graph partitioning (Pothen, Simon, and Liou 1990),
graph ordering (Juvan and Mohar 1992),
spectral clustering (Shi and Malik 2000),
Laplacian eigenmap (Belkin and Niyogi 2003),

and more.
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How to draw a graph properly?

Problem

Given a weighted graph G on n vertices and a target dimension d, find an
n x d matrix Y such that

minimize tr(Y'LY) = Y gijrerE) 1vi — yill®
subject to 1'Y =07 and
Yy =1

Intuition:
o tr(T'TLY): the potential energy of a spring-mass system.
@ 1Y =0": centered at the origin.

@ Y'Y = I: normalized each coordinate.
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How to draw a graph properly?

Problem

Given a weighted graph G on n vertices and a target dimension d, find an
n x d matrix Y such that

minimize tr(Y'LY) = Y gijrerE) 1vi — yill®
subject to 1'Y =07 and
Yy =1

Intuition:

o tr(T'TLY): the potential energy of a spring-mass system.
@ 1Y =0": centered at the origin.

@ Y'Y = I: normalized each coordinate.

Spectral embedding algorithm generates the answer!
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Some exmples
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https://colab.research.google.com/github/jephianlin/ModularPython/blob/master/Examples-of-spectral-clustering.ipynb
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Thanks! o@miung
AL=16

ILAS2025

4364962 - --

https://ilas2025.tw
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