
On the distance matrices of the CP graphs

Jephian C.-H. Lin

Department of Applied Mathematics, National Sun Yat-sen University

Aug 2, 2018
Workshop on Combinatorics and Graph Theory, Taipei, Taiwan

Joint work with Yen-Jen Cheng

On the distance matrices of the CP graphs 1/27 NSYSU



Distance matrix

I Let G be a connected simple graph on vertex set
V = {1, . . . , n}.

I The distance dG (i , j) between two vertices i , j on G is the
length of the shortest path.

I The distance matrix of G is an n × n matrix

D =
[
dG (i , j)

]
.

1 2 3 4 5


0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0


On the distance matrices of the CP graphs 2/27 NSYSU



Motivation: Pierce’s loop switching scheme

I How two build a phone call between two persons?
I Root-USA-Iowa-Jephian
I Root-USA-Illinois-Friend
I Root-Taiwan-Taichung-Home
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Graham and Pollak’s model

I A model works for all graphs, not limited to trees.

I Each vertex is assigned with an address, and the distance
between two vertices is the Hamming distance of the address.

I Find the neighbor that decrease the Hamming distance.
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Matrix representation of each digit

I Consider the k-th digit of each vertex. Let αk be the ones; let
βk be the zeros. Let Bk be the adjacency matrix of the
complete bipartite graph between αk and βk .

I The i , j-entry of Bk indicate the contribution of the k-th digit
to the Hamming distance.

A 1111d
B 001dd
C 11d0d
D 000d1
E 10dd0
F 010dd

B1 =



0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0



On the distance matrices of the CP graphs 5/27 NSYSU



Matrix representation of each digit

I Consider the k-th digit of each vertex. Let αk be the ones; let
βk be the zeros. Let Bk be the adjacency matrix of the
complete bipartite graph between αk and βk .

I The i , j-entry of Bk indicate the contribution of the k-th digit
to the Hamming distance.

A 1111d
B 001dd
C 11d0d
D 000d1
E 10dd0
F 010dd

B3 =



0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0


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Equivalent definitions

Let G be a graph and D its distance matrix. The following
questions are equivalent.

Q1: Find an addressing scheme of length t such that the Hamming
distance of the strings is the distance of the vertices.

Q2: Find B1, . . . ,Bt such that
∑t

k=1 Bk = D, where each Bk is
the adjacency matrix of a complete bipartite graph.
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Length of the address

Theorem (Graham and Pollak 1971)

Let G be a graph and D its distance matrix. Then such an address
always exist and its length is at least

max{n−, n+},

where n−, n+ are the negative and positive inertia.

Corollary (Graham and Pollak 1971)

When G is a complete graph or a tree, then the minimum length
of the address is |V (G )| − 1.
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Length of the address

Conjecture (Graham and Pollak 1971)

For any graph on n vertices, the address can be chosen with length
at most n − 1.

Theorem (Winkler 1983)

The squashed cube conjecture is true.
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How to compute the inertia?

I Let A be a matrix. The k-th leading minor Dk of A is the
determinant of the submatrix on the first k rows/columns.

I Suppose D1, . . . ,Dn are the leading minors with Dn 6= 0.
Jones showed that there are no two consecutive zeros.

Theorem (Jones 1950)

Let A be a nonsingular symmetric n × n matrix with principal
leading minors D1, . . . ,Dn. Then n− is the number of sign changes
in the sequence 1,D1, . . . ,Dn, ignoring the zeros in the sequence.
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Trees and complete graphs

Theorem (Graham and Pollak 1971)

For every tree T on n vertices,

detD(T ) = (−1)n−1(n − 1)2n−2.

Proposition

Let Kn be the complete graph on n vertices. Then

detD(Kn) = (−1)n−1(n − 1).

What other graphs whose distance determinant only depends on
the order?
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The k-tree

Start with Kk with vertex labeled as 1, . . . , k. Then for
j = k + 1, . . . , n, add a new vertex j inductively such that

I j joins with a k-clique.

2-tree
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The linear k-tree

Start with Kk with vertex labeled as 1, . . . , k. Then for
j = k + 1, . . . , n, add a new vertex j inductively such that

I j joins with a k-clique.

I j joins with the last vertex j − 1.

linear 3-tree

1 3 5

2 4 6

7

The backward degrees are 0, 1, . . . , k − 1, k, . . . , k.
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The CP graph

Let s = q1, . . . , qn be a given backward degree sequence. Start
with K2 with vertex labeled as 1, 2. Then for j = 3, . . . , n, add a
new vertex j inductively such that

I j joins with a qj -clique.

I j joins with the last qj − 1 vertex.

s = 0, 1, 2, 2, 3, 2, 2, 3

1 2
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Special case: 2-clique path

I 2-clique path: combining cliques of sizes p1, . . . , pm by
distinct edges

I Let [a] = {1, . . . , a} and [a, b] = [a, a + 1, . . . , b].

I Then s = 0, 1, [2, p1 − 1], [2, p2 − 1], . . . , [2, pm − 1].

I Denoted as s = 2 : p1, . . . , pm.

s

0, 1
2 p1 = 3
2, 3 p2 = 4
2 p3 = 3
2, 3 p4 = 4

1 2

3

4

5

6
7

8
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Fixed bj and flexible aj

Let s = q1, . . . , qn. In a CP graph of s, each vertex j has qj
backward neighbors:

I qj − 1 fixed neighbors, and

I 1 flexible neighbor.

That is,
N(j) ∩ [j − 1] = {aj} ∪̇ {bj , j − 1},

where bj = j − qj + 1 is fixed and aj may vary.

The family CPs includes all CP graphs build from the sequence s.
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detD(P4) = −12 detD(K1,3) = −12

Theorem (Graham and Pollak 1971)

For every tree T on n vertices,

detD(T ) = (−1)n−1(n − 1)2n−2.
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History

I Graham and Pollak 1971: detD(T ) of a tree T only depends
on n. [Yan and Yeh gave a simpler proof in 2006.]

I Graham, Hoffman, and Hosoya 1977: detD(G ) only depends
on its blocks, but not how blocks attached together.

I Bapat, Kirkland, and Neumann: weighted distance matrix of a
tree.

I Bapat, Lal, and Pati; Yan and Yeh: q-analog and the
q-exponential distance matrix of a tree.
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History

I Graham and Pollak 1971: detD(T ) of a tree T only depends
on n. [Yan and Yeh gave a simpler proof in 2006.]

I Graham, Hoffman, and Hosoya 1977: detD(G ) only depends
on its blocks, but not how blocks attached together.

I Bapat, Kirkland, and Neumann: weighted distance matrix of a
tree.

I Bapat, Lal, and Pati; Yan and Yeh: q-analog and the
q-exponential distance matrix of a tree.

How about graphs without a cut vertex?
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How about k-trees?

detD(G1) = −8 detD(G2) = −9 detD(G3) = −9
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How about k-trees?

detD(G1) = −8 detD(G2) = −9 detD(G3) = −9

Linear 2-trees seems promising.
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How about k-trees?

detD(G1) = −8 detD(G2) = −9 detD(G3) = −9

Theorem (Cheng and L 2018+)

For every linear 2-tree G on n vertices,

detD(G ) = (−1)n−1
(

1 +

⌊
n − 2

2

⌋)(
1 +

⌈
n − 2

2

⌉)
.
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How about linear k-tree?

detD(G1) = 4 detD(G2) = 6
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2-clique paths

Given p1, . . . , pm ≥ 3, a 2-clique path is obtained from a sequence
of complete graphs Kp1 , . . . ,Kpm by gluing an edge of Kpi to an
edge of Kpi+1 , i = 1, . . . ,m; an edge cannot be glued twice. The
family CP2:p1,...,pm collects all such graphs.

G ∈ CP2:3,4,3,4

detD(G ) = (1 + 1 + 1)(1 + 2 + 2) = 15

Theorem (Cheng and L 2018+)

For every graph G ∈ CP2:p1,...,pm on n vertices,

detD(G ) = (−1)n−1

(
1 +

∑
k odd

(pk − 2)

)(
1 +

∑
k even

(pk − 2)

)
.
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The CP graphs

Let s = q1, . . . , qn.

I Vertex k has qk backward neighbors: qk − 1 fixed and 1
flexible.

N(j) ∩ [j − 1] = {aj} ∪̇ {bj , j − 1},

where bj = j − qj + 1 is fixed and aj may vary.

I Examples of CP0,1,2,2,2,2,3,3:

1 3 5 7

2 4 6 8

1
2

3 4

5

67
8
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Reducing matrix

I The reducing matrix E of a CP graph is an n × n matrix
whose k-th column is{

ek if k ∈ {1, 2},
ek − eak − ek−1 + eak−1

if k ≥ 3.

1 3 5 7

2 4 6 8



1 0 0 1 0 0 0 0
0 1 −1 −1 1 0 0 0
0 0 1 −1 −1 1 0 0
0 0 0 1 −1 −1 0 1
0 0 0 0 1 −1 0 −1
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


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Theorem (Cheng and L 2018+)

Let s be a sequence of backward degrees. For any G ∈ CPs with
the distance matrix D and the reducing matrix E , the matrix

E>DE

only depends on s.

I Note that E is an upper triangular matrix with every diagonal
entry equal to 1.

Corollary (Cheng and L 2018+)

Let s be a sequence of backward degrees. Then

detD(G ) and inertiaD(G )

are independent of the choice of G ∈ CPs .
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detD(G1) = detD(G2) = 56
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detD(G1) = detD(G2) = 56

Thank you!
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