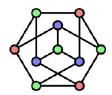
The Forbidden Subposet Problems and Turán Problems



Wei-Tian Li advisor:Jerrold R. Griggs

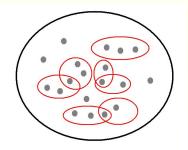
Institute of Mathematics Academia Sinica, Taiwan

2012 Workshop on Graph Theory and Combinatorics & 2012 Symposium for Young Combiantorialists

Institute of Mathematics Academia Sinica

Introduction

Consider a family of subsets of $[n] := \{1, 2, ..., n\}$ such that $A \not\subset B$ is required for any distinct members A and B of this family. Such a family is said to be **inclusion-free**.



Question: What is the maximum size of such a family?

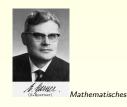
Institute of Mathematics Academia Sinica

<□ > < ② > < ≧ > < ≧ > < ≧ > ≤ ≧ < つへで 2/23

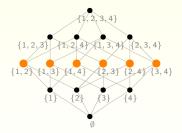
THEOREM (Sperner, 1928) Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then

$$|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}.$$

The upper bound is achieved by taking all sets of size $\lfloor \frac{n}{2} \rfloor$.



Forschungsinstitut Oberwolfach



Institute of Mathematics Academia Sinica

(日) (同) (日) (日)

Forbidden Subposet Problems

A poset (partially ordered set) $P = (P, \leq)$ is a set P with a binary partial order relation \leq satisfying

> 1. For all $x \in P$, $x \leq x$. (reflexivity) 2. If $x \leq y$ and $y \leq x$, then x = y. (antisymmetry) 3. If x < y and y < z, then x < z. (transitivity)

Figure: The Hasse diagrams of some small posets.

4 / 23

Academia Sinica

A D N A B N A B N A

The *Boolean lattice* $\mathcal{B}_n = (2^{[n]}, \subseteq)$ is the poset consisting of the power set of [n] and the inclusion relation as the partial order.

A poset $P_1 = (P_1, \leq_1)$ contains another poset $P_2 = (P_2, \leq_2)$ as a *(weak) subposet* if there exists an injection f from P_2 to P_1 , which preserves the order, that is $f(a) \leq_1 f(b)$ whenever $a \leq_2 b$.

Example:

$$P_{2} = (\{a, b, c\}, \{(a, b), (a, c)\})$$

$$P_{2} = (\{a, b, c\}, \{(a, b), (a, c)\})$$

$$C \longrightarrow C$$

$$B$$

$$P_{1}$$

$$A$$

$$P_{1} = (\{A, B, C\}, \{(A, B), (B, C), (A, C)\})$$

イロト イポト イモト イモト

A family $\mathcal{F} = (\mathcal{F}, \subseteq)$ of subsets of [n] is said to be *P*-free, if it does not contain $P = (P, \leq)$ as a subposet.

Let La(n, P) be the largest size of a *P*-free family of subsets of [n].

There are many results on La(n, P) for various posets P, mostly obtained by G. O. H. Katona and his collaborators.

Institute of Mathematics Academia Sinica

The weight of a *P*-free family

Upper Bound of La(n, P)

The Lubell function of a family \mathcal{F} of subsets of [n] is

$$ar{h}_n(\mathcal{F}) = \sum_{F\in\mathcal{F}} rac{1}{\binom{n}{|F|}},$$

which is a weighted sum of the sets in the family.

7/23

Institute of Mathematics Academia Sinica

イロト イポト イモト イモト

The weight of a *P*-free family

Upper Bound of La(n, P)

The Lubell function of a family \mathcal{F} of subsets of [n] is

$$ar{h}_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} rac{1}{\binom{n}{|F|}},$$

which is a weighted sum of the sets in the family.

THEOREM (Yamamoto, 1954; Mashalkin, 1963; Bollobás, 1965; Lubell, 1966)

For any antichain \mathcal{F} os subsets of [n],

$$\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \leq 1 \quad (LYM-inequality).$$

Institute of Mathematics Academia Sinica

PROPOSITION

For any (P-free) family \mathcal{F} of subsets of [n], if $\overline{h}_n(\mathcal{F}) \leq k$, then

$$|\mathcal{F}| \leq k \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

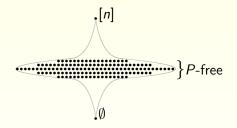
Define

$$\lambda_n(P) := \max_{\mathcal{F}: P \text{-free}} \bar{h}_n(\mathcal{F}).$$

The value of $\lambda_n(P)$ gives an upper bound of La(n, P).

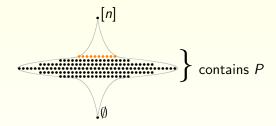
Lower Bound of La(n, P)

Take as many levels in the middle of \mathcal{B}_n as possible until the family will contain P as a subposet when taking one more level.



Institute of Mathematics Academia Sinica Lower Bound of La(n, P)

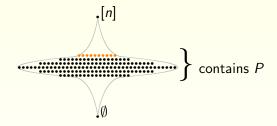
Take as many levels in the middle of \mathcal{B}_n as possible until the family will contain P as a subposet when taking one more level.



イロト イポト イラト イラト

Lower Bound of La(n, P)

Take as many levels in the middle of \mathcal{B}_n as possible until the family will contain P as a subposet when taking one more level.



e(P): the largest integer k such that the family consisting of the middle k levels of \mathcal{B}_n is P-free for any n.

Institute of Mathematics Academia Sinica

イロト イポト イラト イラト

Observation: If $\lim_{n\to\infty} \lambda_n(P) = e(P)$, then

$$\operatorname{La}(n,P) \sim e(P) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Define $\lambda(P) = \lim_{n \to \infty} \lambda_n(P)$. Note that $\lambda(P) \ge e(P)$. There exist posets satisfying $\lambda(P) = e(P)$ but also many posets satisfy $\lambda(P) > e(P)$.

Observation: If $\lim_{n\to\infty} \lambda_n(P) = e(P)$, then

$$\operatorname{La}(n, P) \sim e(P) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Define $\lambda(P) = \lim_{n \to \infty} \lambda_n(P)$. Note that $\lambda(P) \ge e(P)$.

There exist posets satisfying $\lambda(P) = e(P)$ but also many posets satisfy $\lambda(P) > e(P)$.

Remark. If a poset *P* satisfies $\lambda_n(P) \le e(P)$, then it will have $\lambda(P) = e(P)$. Such a poset is called a *uniformly L-bounded poset*.

Institute of Mathematics Academia Sinica

イロン 不得入 イヨン イヨン 二日

Observation: If $\lim_{n\to\infty} \lambda_n(P) = e(P)$, then

$$\operatorname{La}(n, P) \sim e(P) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Define $\lambda(P) = \lim_{n \to \infty} \lambda_n(P)$. Note that $\lambda(P) \ge e(P)$.

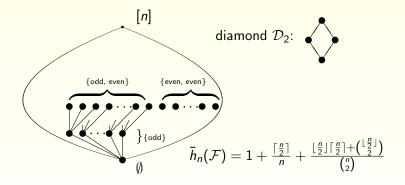
There exist posets satisfying $\lambda(P) = e(P)$ but also many posets satisfy $\lambda(P) > e(P)$.

Remark. If a poset *P* satisfies $\lambda_n(P) \le e(P)$, then it will have $\lambda(P) = e(P)$. Such a poset is called a *uniformly L-bounded poset*.

The smallest poset P for which La(n, P) is not clearly understood is the *diamond poset* D_2 . It does not satisfy $\lambda(P) = e(P)$.

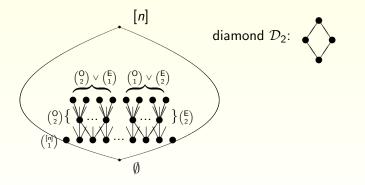
Institute of Mathematics Academia Sinica

CONJECTURE (Griggs, L., and Lu, 2012) For the diamond poset D_2 , $\lambda_n(D_2) = 2 + \frac{\lfloor \frac{n^2}{4} \rfloor}{n(n-1)}$.



Institute of Mathematics Academia Sinica

CONJECTURE (Griggs, L., and Lu, 2012) For the diamond poset D_2 , $\lambda_n(D_2) = 2 + \frac{\lfloor \frac{n^2}{4} \rfloor}{n(n-1)}$.



Institute of Mathematics Academia Sinica

THEOREM (Kramer, Martin, and Young, preprint) If a \mathcal{D}_2 -free family \mathcal{F} contains \emptyset , then $\bar{h}_n(\mathcal{F}) \le 2.25 + o_n(1).$

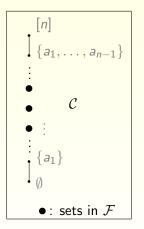
THEOREM (Kramer, Martin, and Young, preprint)

 $\operatorname{La}(n,\mathcal{D}_2) \leq 2.25 + o_n(1).$

Question: Does $\bar{h}_n(\mathcal{F}) > 2.25 + \varepsilon$ for some \mathcal{F} with $\emptyset \notin \mathcal{F}$?

14/23

A sketch of the proof:



A *full chain* C in B_n is a family of subsets as follows.

 $\emptyset \subset \{a_1\} \subset \{a_1, a_2\} \cdots \subset [n]$

Associate a set $F \in \mathcal{F}$ to a full chain \mathcal{C} if $F \in \mathcal{C}$.

By counting the number of pairs (F, C) in two different ways, we have

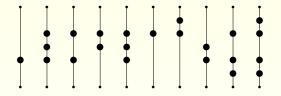
$$\bar{h}_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} = \sum_{\mathcal{C}: \text{full chain}} \frac{|\mathcal{C} \cap \mathcal{F}|}{n!}$$

Institute of Mathematics Academia Sinica

イロト イポト イヨト イヨト

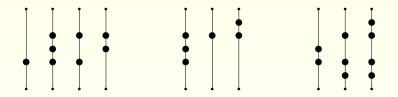
Figure: A full chain C.

The Lubell function of $\bar{h}_n(\mathcal{F})$ is equal to the average number of times that the full chains intersect the family \mathcal{F} .



1) Partition the set of full chains into blocks. 2) Compute the average of $|C \cap F|$ for full chains in each bloc 3) $\overline{h}_{a}(F)$ is bounded by the maximum of those averages.

Institute of Mathematics Academia Sinica The Lubell function of $\bar{h}_n(\mathcal{F})$ is equal to the average number of times that the full chains intersect the family \mathcal{F} .



(1) Partition the set of full chains into blocks.

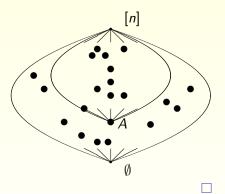
- (2) Compute the average of $|C \cap F|$ for full chains in each block.
- (3) $\bar{h}_n(\mathcal{F})$ is bounded by the maximum of those averages.

Institute of Mathematics Academia Sinica

Let C_A be a block of full chains C with $\min C \cap F = A$. Then

$$\sum_{\mathcal{C}\in\mathcal{C}_A}rac{|\mathcal{C}\cap\mathcal{F}|}{|\mathcal{C}_A|}=ar{h}_m(\mathcal{F}'),$$

where \mathcal{F}' is some \mathcal{D}_2 -free family as \mathcal{F} is \mathcal{D}_2 -free, and $m \leq n$. Moreover $\emptyset \in \mathcal{F}'$.



Institute of Mathematics Academia Sinica

<□ > < ② > < ≧ > < ≧ > < ≧ > ≧ の Q () 18/23

Sizes versus weights

Define

$$\pi(P) = \lim_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

CONJECTURE (Griggs and Lu, 2009)

For any finite poset P, $\pi(P)$ is an integer.

Р		\mathbf{V}	V	\diamond	\bowtie	$\mathbf{\mathbf{Y}}$	
<i>e</i> (<i>P</i>)	1	1	2	2	2	2	3
$\pi(P)$	1	2	2	?	2	2	3
$\lambda(P)$	2	2.25	2.25	< 2.273	3	3	3

Table: e(P), $\pi(P)$, and $\lambda(P)$ for |P| = 4.

Institute of Mathematics Academia Sinica

Turán's Problems

Question: What is the largest number of edges of a triangle-free graph on *n* vertices?

THEOREM (Mantel, 1907)

The balanced complete bipartite graph $K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$ is the only triangle-free graph that contains most edges.

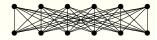


Figure: K_{6,6}

Institute of Mathematics Academia Sinica Theorem (Turán, 1941)

Let G be a K_r -free graph with n vertices. Then

 $E(G) \leq |E(T_{r-1}(n))|,$

where $T_{r-1}(n)$ is the balanced (r-1)-partite graph with n vertices, with equality if and only if G is isomorphic to $T_{r-1}(n)$.

Institute of Mathematics Academia Sinica

化口油 化固定 化压压 化压压

Theorem (Turán, 1941)

Let G be a K_r -free graph with n vertices. Then

 $E(G) \leq |E(T_{r-1}(n))|,$

where $T_{r-1}(n)$ is the balanced (r-1)-partite graph with n vertices, with equality if and only if G is isomorphic to $T_{r-1}(n)$. Turán density:

$$\pi(H) := \lim_{n o \infty} \max_{G: H ext{-free}} rac{|E(G)|}{\binom{n}{2}}.$$

We have $\pi(K_r) = 1 - \frac{1}{r}$ for any complete graph K_r .

Institute of Mathematics Academia Sinica

化口油 化固定 化压压 化压压

Consider a family \mathcal{F} consisting of \emptyset , $\binom{[n]}{1}$, $\binom{[n]}{3}$, and the edge set of $K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$. It is \mathcal{D}_6 -free

Hence $\lambda_n(\mathcal{D}_6) \geq 3\frac{1}{2}$. On the other hand, we have $\lambda_n(\mathcal{D}_6) \leq 3\frac{2}{3}$.

Academia Sinica

A D N A D N A D N A D N

Open problems

Problem

Does $\lambda(P)$ exist for any poset P?

Problem

What posets satisfy $e(P) = \lambda(P)$ (hence $\pi(P)$ as well)?

Problem

Is $\lambda(\mathcal{D}_6) = 3\frac{1}{2}$? If this is true, it implies Mantel's Theorem.

Open problems

PROBLEM

Does $\lambda(P)$ exist for any poset P?

Problem

What posets satisfy $e(P) = \lambda(P)$ (hence $\pi(P)$ as well)?

PROBLEM

Is $\lambda(\mathcal{D}_6) = 3\frac{1}{2}$? If this is true, it implies Mantel's Theorem.

Institute of Mathematics Academia Sinica