A Mathematical Model for Finding the Culprit Who Spreads Rumors ^搜尋散佈謠言者的數學模^型

- ^研究生: 李姿^慧
- 指導教授: 傅恆霖 教授

Department of Applied Mathematics National Chiao Tung University

June 12, 2012

 $2Q$

イロト イ団 トイモト イモト

 $2Q$

メロトメ 御 トメ 差 トメ 差 トー 差

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

メロトメ 御 トメ 差 トメ 差 トー 差

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

 $2Q$

 4 ロ) 4 \overline{r}) 4 \overline{r}) 4 \overline{r})

An epidemiological model.

 $2Q$

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

- An epidemiological model.
- In a closed population.

 $2Q$

メロトメ部 トメミトメミト

- An epidemiological model.
- In a closed population.
- Two types of people:
	- ▶ *S_t*: The number of susceptible (可被感染的) people at time *t*.
	- ▶ *I_t*: The number of infected (已被感染的) people at time *t*.

 2990

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

- An epidemiological model.
- In a closed population.
- Two types of people:
	- ▶ *S_t*: The number of susceptible (可被感染的) people at time *t*.
	- ▶ *I_t*: The number of infected (已被感染的) people at time *t*.

 $I_{t+\Delta t} - I_t = \beta S_t I_t \Delta t$.

 2990

- An epidemiological model.
- In a closed population.
- Two types of people:
	- ▶ *S_t*: The number of susceptible (可被感染的) people at time *t*.
	- ▶ *I_t*: The number of infected (已被感染的) people at time *t*.
- $I_{t+\Delta t} I_t = \beta S_t I_t \Delta t$.
- A discrete-time model:

$$
\begin{cases}\nS_{t+1} = S_t - \beta S_t I_t, \\
I_{t+1} = I_t + \beta S_t I_t, \\
I_0 = A constant.\n\end{cases}
$$

つくへ

メロトメ部 トメミトメミト

- *St* : The number of people who don't know rumors yet.
- *It* : The number of people who have known rumors.

 2990

メロトメ部 トメミトメミト

- *St* : The number of people who don't know rumors yet.
- *It* : The number of people who have known rumors.

Assumption

Using a fixed population, $S_t + I_t = N$.

Assume $S_0 = N$, $I_0 = 0$, and

$$
S_{t+1} = S_t - 1, \quad I_{t+1} = I_t + 1,
$$

 $2Q$

- *St* : The number of people who don't know rumors yet.
- *It* : The number of people who have known rumors.

Assumption

Using a fixed population, $S_t + I_t = N$.

Assume $S_0 = N$, $I_0 = 0$, and

$$
S_{t+1} = S_t - 1, \quad I_{t+1} = I_t + 1,
$$

 \bullet *V*(*G*): People.

• $E(G)$: Relationship between two people.

 $2Q$

Let *G^t* be a subgraph of order *t* of *G*.

This graph is compose of *t* infected vertices which are people who have known rumors at time *t*.

K ロ ト K 何 ト K ヨ ト K

Let *G^t* be a subgraph of order *t* of *G*.

This graph is compose of *t* infected vertices which are people who have known rumors at time *t*.

*G*1: Rumor source.

K ロ ト K 何 ト K ヨ ト K

Let *G^t* be a subgraph of order *t* of *G*.

This graph is compose of *t* infected vertices which are people who have known rumors at time *t*.

*G*1: Rumor source.

In each discrete time-step $t + 1$, $t > 0$, G_{t+1} develops from G_t by adding a vertex *z* with an edge with the following probability distribution:

$$
\mathbf{P}_{t+1}\left(z\right) = \frac{1}{\sum_{v \in V(G_t)} d(v) - 2(t-1)}.\tag{1}
$$

K ロ ト K 何 ト K ヨ ト K

つくへ

- Countably infinite vertex set.
- Every vertex has *d* neighbors. $N(v)$: Neighborhood of *v*. $d(v)$: Degree of *v*.

すロト (個) す悪 トす

 \equiv

- Countably infinite vertex set.
- Every vertex has *d* neighbors. $N(v)$: Neighborhood of *v*. $d(v)$: Degree of *v*.

すロト (個) す悪 トす

 \equiv

- Countably infinite vertex set.
- Every vertex has *d* neighbors. $N(v)$: Neighborhood of *v*. $d(v)$: Degree of *v*.
- A rooted tree T_ν can be **decomposed** into *d* subtrees.

K ロ ト K 何 ト K ヨ ト K

 $2Q$

- Countably infinite vertex set.
- **Every** vertex has *d* neighbors. $N(v)$: Neighborhood of *v*. $d(v)$: Degree of *v*.
- A rooted tree T_ν can be **decomposed** into *d* subtrees.

 $(T_{\nu_1}^{\nu}, T_{\nu_2}^{\nu}, T_{\nu_3}^{\nu})$: Branches of T_{ν} , and $t_{\nu_1}^{\nu} + t_{\nu_2}^{\nu} + t_{\nu_3}^{\nu} = t_{\nu} - 1.$

メロトメ部 トメミトメミト

Definition 1

Consider **rumor centrality**(謡言向心性) $R(v, G_n)$, the followings are equivalent.

 $2Q$

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Definition 1

Consider **rumor centrality**(謡言向心性) $R(v, G_n)$, the followings are equivalent.

• The number of distinct ways to spread a rumor to every vertex in G_n with ν as the source.

 $2Q$

K ロ ト K 何 ト K ヨ ト K
Consider **rumor centrality**(謡言向心性) $R(v, G_n)$, the followings are equivalent.

- \bullet The number of distinct ways to spread a rumor to every vertex in G_n with v as the source.
- **Rumor center** of G_n is the vertex with maximum rumor centrality.

 $2Q$

 4 D \rightarrow 4 \overline{P} \rightarrow 4 \overline{B} \rightarrow 4 \overline{B}

Consider **rumor centrality**(謡言向心性) $R(v, G_n)$, the followings are equivalent.

- \bullet The number of distinct ways to spread a rumor to every vertex in G_n with v as the source.
- **Rumor center** of G_n is the vertex with maximum rumor centrality.

Proposition 1 (D. Shah and T. Zaman, 2011 [\[6\]](#page-70-0))

Rumor center is the **maximum likelihood estimator**(最大概似估計) of a regular tree.

 Ω

メロトメ部 トメミトメミト

Consider **rumor centrality**(謡言向心性) $R(v, G_n)$, the followings are equivalent.

- \bullet The number of distinct ways to spread a rumor to every vertex in G_n with v as the source.
- **Rumor center** of G_n is the vertex with maximum rumor centrality.

Proposition 1 (D. Shah and T. Zaman, 2011 [\[6\]](#page-70-0))

Rumor center is the **maximum likelihood estimator**(最大概似估計) of a regular tree.

Proposition 2 (D. Shah and T. Zaman, 2011 [\[6\]](#page-70-0))

Given an *n* vertices tree,

- Node *v* is the **only** rumor center if and only if $t_u^v < \frac{n}{2}$ for all $u \neq v$.
- If there is a node *v* such that $t_u^v = \frac{n}{2}$, then *u* and *v* both are rumor centers.

 $2Q$

K ロ K K 個 K K 重 K K 重 K …

 2990

 2990

 2990

 2990

 2990

 2990

 2990

 2990

 2990

 2990

 2990

 2990

Let $E_t(G)$ be the event of correct rumor source detection under the ML rumor source estimator after time *t* on a graph *G*. If the graph *G* considered is prescribed , then we use E_t to denote $E_t(G)$.

 $2Q$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

Let $E_t(G)$ be the event of correct rumor source detection under the ML rumor source estimator after time *t* on a graph *G*. If the graph *G* considered is prescribed , then we use E_t to denote $E_t(G)$.

Theorem 1

Suppose the rumor has spread in a 2-regular tree. Then we have that

$$
\mathbf{P}(E_t) = O\left(\frac{1}{\sqrt{t}}\right).
$$

 $2QQ$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

Let $E_t(G)$ be the event of correct rumor source detection under the ML rumor source estimator after time *t* on a graph *G*. If the graph *G* considered is prescribed , then we use E_t to denote $E_t(G)$.

Theorem 1

Suppose the rumor has spread in a 2-regular tree. Then we have that

$$
\mathbf{P}(E_t) = O\left(\frac{1}{\sqrt{t}}\right).
$$

Theorem 2

Suppose the rumor has spread in a regular tree. Then we have that

$$
0 < \mathbf{P}(E_t) \leq \frac{1}{2}.
$$

 Ω

$$
A_d = \{(a_1, a_2, \cdots, a_d) | 1 \le a_i < \frac{n}{2}, \sum_{i=1}^d a_i = n - 1\}, \text{ and}
$$

$$
B_d = \{(b_1, b_2, \cdots, b_d) | b_i \in \mathbb{N}, \sum_{i=1}^d b_i = n - 1\}.
$$

Clearly, $A_d \subseteq B_d$.

 2990

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

$$
A_d = \{(a_1, a_2, \cdots, a_d) | 1 \le a_i < \frac{n}{2}, \sum_{i=1}^d a_i = n - 1\},\text{ and}
$$

$$
B_d = \{(b_1, b_2, \cdots, b_d) | b_i \in \mathbb{N}, \sum_{i=1}^d b_i = n - 1\}.
$$

i=1

Clearly, $A_d \subseteq B_d$.

 $d = 3, t = n = 7$ $(1, 1, 4), (1, 4, 1), (4, 1, 1),$ $(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),$ $(3, 1, 2), (3, 2, 1), (2, 2, 2).$

$$
A_d = \{(a_1, a_2, \cdots, a_d) | 1 \le a_i < \frac{n}{2}, \sum_{i=1}^d a_i = n - 1\},\text{ and}
$$

$$
B_d = \{(b_1, b_2, \cdots, b_d) | b_i \in \mathbb{N}, \sum_{i=1}^d b_i = n - 1\}.
$$

i=1

Clearly, $A_d \subseteq B_d$.

 $d = 3, t = n = 7$ $(1, 1, 4), (1, 4, 1), (4, 1, 1),$ $(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),$ $(3, 1, 2), (3, 2, 1), (2, 2, 2).$

$$
A_d = \{(a_1, a_2, \cdots, a_d) | 1 \le a_i < \frac{n}{2}, \sum_{i=1}^d a_i = n - 1\},\text{ and}
$$

$$
B_d = \{(b_1, b_2, \cdots, b_d) | b_i \in \mathbb{N}, \sum_{i=1}^d b_i = n - 1\}.
$$

i=1

Clearly, $A_d \subseteq B_d$.

 $d = 3, t = n = 7$ $(1, 1, 4), (1, 4, 1), (4, 1, 1),$ $(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),$ $(3, 1, 2), (3, 2, 1), (2, 2, 2).$

$$
A_d = \{(a_1, a_2, \cdots, a_d) | 1 \le a_i < \frac{n}{2}, \sum_{i=1}^d a_i = n - 1\},\text{ and}
$$

$$
B_d = \{(b_1, b_2, \cdots, b_d) | b_i \in \mathbb{N}, \sum_{i=1}^d b_i = n - 1\}.
$$

Clearly, $A_d \subseteq B_d$. Moreover,

$$
|B_d| = {n-1-d+d-1 \choose d-1} = {n-2 \choose d-1},
$$

$$
|A_d| = {n-2 \choose d-1} - d \cdot \left(\frac{n}{d-1}\right).
$$

$$
d = 3, t = n = 7
$$

(1, 1, 4), (1, 4, 1), (4, 1, 1),
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2).

t

Given $(t_{v_1}^v, t_{v_2}^v, \dots, t_{v_d}^v)$, the total number of ways to spread a rumor is

$$
\frac{(n-1)!}{\sum_{\substack{\nu_1,\nu_2,\nu_1,\nu_2,\nu_3\\\nu_1,\nu_2,\nu_3}} \cdot \prod_{k=1}^d \prod_{i=1}^{\ell_{\nu_k}^{\nu_i}} \left((d-2)(i-1)+1 \right). \tag{2}
$$

Given $(t_{v_1}^v, t_{v_2}^v, \dots, t_{v_d}^v)$, the total number of ways to spread a rumor is

$$
(n-1)!\prod_{k=1}^{d} \frac{\prod_{i=1}^{t_{v_k}^{v}} ((d-2) (i-1) + 1)}{t_{v_k}^{v}}.
$$
 (2)

[Introduction](#page-1-0) [Rumor Source Estimator](#page-34-0) Rumor Source Estimator Rumor Schult [Conclusion](#page-68-0) Result Conclusion

Detection probability of *d*-regular trees

$$
P_d(n) = \frac{\sum_{\substack{(r_{v_1}, r_{v_2}, \cdots, r_{v_d}) \in A_d \\ (r_{v_1}, r_{v_2}, \cdots, r_{v_d}) \in B_d}} \left(\prod_{k=1}^d \frac{\prod_{k=1}^{r_{v_k}^{v_k}} ((d-2) (i-1) + 1)}{r_{v_k}^{v_k!}} \right)}{\sum_{\substack{(r_{v_1}, r_{v_2}, \cdots, r_{v_d}) \in B_d}} \left(\prod_{k=1}^d \frac{\prod_{k=1}^{r_{v_k}^{v_k}} ((d-2) (i-1) + 1)}{r_{v_k}^{v_k!}} \right)}.
$$
(3)

 2990

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

[Introduction](#page-1-0) [Rumor Source Estimator](#page-34-0) Rumor Source Estimator Rumor Schult [Conclusion](#page-68-0) Result Conclusion

Detection probability of *d*-regular trees

$$
P_d(n) = \frac{\sum_{(i_{v_1}', i_{v_2}', \dots, i_{v_d}') \in A_d} \left(\prod_{k=1}^d \frac{\prod_{k=1}^{i_{v_k}''} ((d-2) (i-1) + 1)}{t_{v_k}^v!} \right)}{\sum_{(i_{v_1}', i_{v_2}', \dots, i_{v_d}'') \in B_d} \left(\prod_{k=1}^d \frac{\prod_{k=1}^{i_{v_k}''} ((d-2) (i-1) + 1)}{t_{v_k}^v!} \right)}.
$$
(3)

Theorem 3

If *G* is a 3-regular tree, then we have that

$$
\lim_{t\to\infty} P(E_t) = \frac{1}{4}.
$$

 $2Q$

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

 $w_{dn} = \prod_{i=1}^{n} (d-2)(i-1) + 1.$

 2990

イロトメ部トメミトメミト

 $w_{dn} = \prod_{i=1}^{n} (d-2)(i-1) + 1.$

f(*x*): The exponential generating function for the sequence ${w_{dn}}_{n=1}^{\infty}$

$$
f(x) = \sum_{n=1}^{\infty} \frac{w_{dn}}{n!} x^n = \sum_{n=1}^{\infty} \frac{\prod_{i=1}^n (d-2)(i-1) + 1}{n!} x^n.
$$
 (4)

 $2QQ$

K ロ X K 個 X K 重 X K 重 X

 $w_{dn} = \prod_{i=1}^{n} (d-2)(i-1) + 1.$

f(*x*): The exponential generating function for the sequence ${w_{dn}}_{n=1}^{\infty}$

$$
f(x) = \sum_{n=1}^{\infty} \frac{w_{dn}}{n!} x^n = \sum_{n=1}^{\infty} \frac{\prod_{i=1}^n (d-2)(i-1) + 1}{n!} x^n.
$$
 (4)

And we have

$$
\bullet (1 - ax)^{-\frac{1}{a}} = \sum_{n=0}^{\infty} {\binom{-\frac{1}{a}}{n}} (-ax)^n = 1 + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^n a(i-1) + 1}{n!} x^n.
$$

 2990

 $w_{dn} = \prod_{i=1}^{n} (d-2)(i-1) + 1.$

f(*x*): The exponential generating function for the sequence ${w_{dn}}_{n=1}^{\infty}$

$$
f(x) = \sum_{n=1}^{\infty} \frac{w_{dn}}{n!} x^n = \sum_{n=1}^{\infty} \frac{\prod_{i=1}^n (d-2)(i-1) + 1}{n!} x^n.
$$
 (4)

And we have

$$
\bullet (1 - ax)^{-\frac{1}{a}} = \sum_{n=0}^{\infty} {\binom{-\frac{1}{a}}{n}} (-ax)^n = 1 + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^n a(i-1) + 1}{n!} x^n.
$$

Hence we immediately know $f(x) = (1 - ax)^{-\frac{1}{a}} - 1$ where $a = d - 2$.

 $2QQ$

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

. (5)

Detection probability of *d*-regular trees

Let $a = d - 2$,

$$
P_d(n) = 1 - \frac{d \sum_{m \geq \frac{n}{2}}^{n-d} \frac{w_{dm}}{m!} \left([x^{n-1-m}] F_{d-1}(x) \right)}{[x^{n-1}] F_d(x)}.
$$

Where

$$
w_{dn} = \prod_{i=1}^{n} (a(i-1) + 1),
$$

\n
$$
[x^{n}]F_{k}(x) = \sum_{l=1}^{k} (-1)^{k-l} {k \choose l} \frac{\prod_{i=1}^{n} (l + a(i-1))}{n!}.
$$

 $2Q$

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow$

Conclusion

General behavior of detection probability for several d 's and $n \leq 100,000$.

Conclusion

General behavior of detection probability for several d 's and $n \leq 100,000$.

$$
\bullet \ \ \frac{1}{2} \geq P_d(n) \geq P_{d'}(n) \geq \frac{1}{4} \ \ \text{if} \ d \geq d' \geq 3
$$

Reference

- N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London, 1975.
- A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology on the spread of epidemics. Proc. IEEE INFOCOM, 2:1455-1466, 2005.
- F C. Moore and M. E. J. Newman. Epidemics and percolation in in small-world networks. Phys. Rev. E, 61:5678-5682, 2000.
	- M. E. J. Newman. The spread of epidemic disease on networks. 2002.
	- R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86:3200-3203, 2001.
	- D. Shah and T. Zaman, Rumors in a Network: Who's the Culprit?, IEEE Transactions on Information Theory, vol. 57, pp. 5163-5181, August 2011.
	- J. H. van Lint and R. M. Wilson. *A Course in Combinatorics*, Cambridge University Press, Cambridge, second edition, 2001.

Thank you for listening.

 $2Q$

メロトメ部 トメミトメミト
