Relation between Graphs

Yangjing Long

Max Planck Intitute for Math. in the Sciences

Joint work with Jan Hubička, Jürgen Jost, Peter F. Stadler and Ling Yang

WGTC2012, Kaohsiung

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Motivation

Figure: Domain interaction graph

Relation: containing relation

$$\{d_2, d_3 \in p_1; d_4 \in p_2; d_1, d_3 \in p_3; d_1 \in p_4\}$$

Yangjing Long Relation between Graphs

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

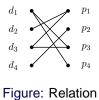
= 900

Motivation

Figure: Domain interaction graph

Relation: containing relation

$$\{d_2, d_3 \in p_1; d_4 \in p_2; d_1, d_3 \in p_3; d_1 \in p_4\}$$



◆□▶ ◆圖▶ ◆注▶ ◆注▶

3

We can define a protein interaction graph by any two proteins have interaction iff there are two domains which belong to them respectively.

・ ロ ト ・ 雪 ト ・ 目 ト

∍

We can define a protein interaction graph by any two proteins have interaction iff there are two domains which belong to them respectively.

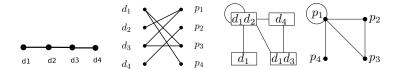


Figure: From Domain Interaction Network to Protein Interaction Network

・ ロ ト ・ 雪 ト ・ 目 ト

3

Find relation between graphs

Figure: Domain interaction network

Protein Interaction Network

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

3

Sac

relation R =

 $\{(d_2, p_1), (d_3, p_1), (d_4, p_2), (d_1, p_3), (d_3, p_3), (d_1, p_4)\}$

Basic Definitions

Definition

The (binary) relation *R* between two sets *A* and *B* is a subset of $A \times B$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Basic Definitions

Definition

The (binary) relation *R* between two sets *A* and *B* is a subset of $A \times B$.

Definition

Given a graph $G = (V_G, E_G)$, a finite set *B* and a binary relation $R \subset V_G \times B$, we define a new graph H = G * R whose vertex set is *B* and for arbitrary $u, v \in B$, $(u, v) \in E_H$ iff one can find $x, y \in V_G$, such that $(x, u), (y, v) \in R$ and $(x, y) \in E_G$.

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

Basic Definitions

Definition

The (binary) relation *R* between two sets *A* and *B* is a subset of $A \times B$.

Definition

Given a graph $G = (V_G, E_G)$, a finite set *B* and a binary relation $R \subset V_G \times B$, we define a new graph H = G * R whose vertex set is *B* and for arbitrary $u, v \in B$, $(u, v) \in E_H$ iff one can find $x, y \in V_G$, such that $(x, u), (y, v) \in R$ and $(x, y) \in E_G$.

Definition

Given two graphs *G* and *H*, if there exists a $R \subset V_G \times V_H$, such that G * R = H, we say *R* is a relation from *G* to *H*.

Definition

Graph homomorphism $G \to H$ is a mapping $f: V_G \to V_H$ such that $(x, y) \in E_G$ implies $(f(x), f(y)) \in E_H$.

Yangjing Long Relation between Graphs

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくぐ

Definition

Graph homomorphism $G \to H$ is a mapping $f: V_G \to V_H$ such that $(x, y) \in E_G$ implies $(f(x), f(y)) \in E_H$.

Definition

Graph multihomomorphism is a mapping $f : V_G \to 2^{V_H} \setminus \emptyset$ such that $(x, y) \in E_G$ implies $(u, v) \in E_H$ for every $u \in f(x)$ and $v \in f(x)$.

・ロット (雪) (日) (日) (日)

Definition

Graph homomorphism $G \to H$ is a mapping $f: V_G \to V_H$ such that $(x, y) \in E_G$ implies $(f(x), f(y)) \in E_H$.

Definition

Graph multihomomorphism is a mapping $f : V_G \to 2^{V_H} \setminus \emptyset$ such that $(x, y) \in E_G$ implies $(u, v) \in E_H$ for every $u \in f(x)$ and $v \in f(x)$.

Definition

Surjective multihomomorphism is a multihomomorphism such that pre-image of every vertex in *H* is non-empty and for every edge (u, v) in *H* we can find an edge (x, y) in *G* satisfying $u \in f(x), v \in f(y)$.

San

$\begin{array}{ll} \mbox{Relation} & \mbox{VS} \\ R \subseteq V_G \times V_H \end{array}$

Surjective multihomomorphism $f: V_G \rightarrow 2^{V_H} \setminus \emptyset$

◆ロト ◆聞 ト ◆注 ト ◆注 ト ─ 注 ─

590

Yangjing Long Relation between Graphs

 $\begin{array}{lll} \mbox{Relation} & \mbox{VS} & \mbox{Surjective multihomomorphism} \\ R \subseteq V_G \times V_H & f: V_G \to 2^{V_H} \setminus \emptyset \end{array}$

Definition

R is full if for every *u*, there is $(u, v) \in R$.

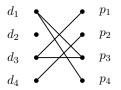


Figure: Non-full relation

イロト イ理ト イヨト イヨト

3

 $\begin{array}{lll} \mbox{Relation} & \mbox{VS} & \mbox{Surjective multihomomorphism} \\ R \subseteq V_G \times V_H & f: V_G \to 2^{V_H} \setminus \emptyset \end{array}$

Definition

R is full if for every *u*, there is $(u, v) \in R$.

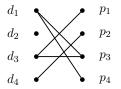


Figure: Non-full relation

If *R* is full and G * R = H, then *R* is a surjective multihomomorphism.

・ ロ ト ・ 雪 ト ・ 目 ト

∍

Relation VS Homomorphism

- If there is a surjective homomorphism *f* : *G* → *H*, then *G* * *R* = *H* for *R* corresponding to *f*.
- If G * R = H and R is full, then there is a homomorphism $f : G \rightarrow H$.

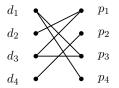


Figure: Homomorphism

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

3

Relation VS Homomorphism

- If there is a surjective homomorphism *f* : *G* → *H*, then *G* * *R* = *H* for *R* corresponding to *f*.
- If G * R = H and R is full, then there is a homomorphism $f : G \rightarrow H$.

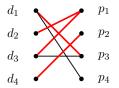


Figure: Homomorphism

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

3

Compose and Decompose

Graph relations compose, i.e., $(G * R) * S = G * (R \circ S)$.

Yangjing Long Relation between Graphs

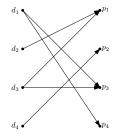
イロト イポト イヨト イヨト

3

Compose and Decompose

Graph relations compose, i.e., $(G * R) * S = G * (R \circ S)$.

Graph relation R can be decomposed to a relation R_D duplicating vertices and a relation R_C contracting vertices.



・ロット (雪) (日) (日) (日)

Compose and Decompose

Graph relations compose, i.e., $(G * R) * S = G * (R \circ S)$.

Graph relation R can be decomposed to a relation R_D duplicating vertices and a relation R_C contracting vertices.

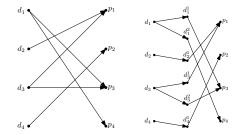
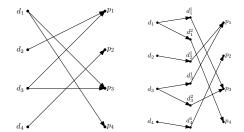
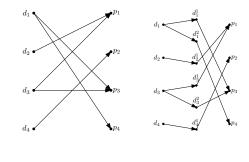


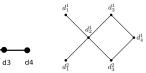
Figure: Decomposition

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト



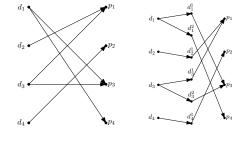
<□▶ <□▶ < 三▶ < 三▶ = 三 の < ⊙

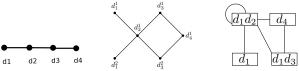




d1 d2

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

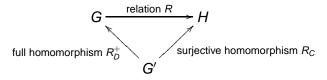




Yangjing Long Relation between Graphs

<□▶ <@▶ <注入 <注▶ <注

5900



Full homomorphism: preserve both edge and non-edge Surjective homomorphism: contraction

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Let \leq_{P}^{Tur} indicate polynomial time Turing reduction. Fix a graph *H*,

- Homomorphism problem Hом(H)
- Full relation problem FUL-REL(H)
- Surjective homomorphis problem SUR-HOM(H)

Theorem

For finite H our relation problem sits in the following relationship:

$\operatorname{Hom}(H) \leq_P^{\operatorname{Tur}} \operatorname{Ful-Rel}(H) \leq_P^{\operatorname{Tur}} \operatorname{Sur-Hom}(H).$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

G * R = G

Theorem

All solutions of G * R = G are automorphisms if and only if G has property that the neighborhoods of vertices do not contain each other.

Yangjing Long Relation between Graphs

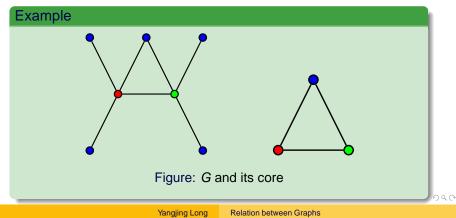
イロト イ理ト イヨト イヨト

3

R-core R-reduced graph Cocore

In graph homomorphism, core of graph G is the smallest subgraph of G which G has homomorphism to.

Core of graph *G* is unique up to isomorphism, so we can it the core, denote it by G_{core} .



R-core R-reduced graph Cocore

Why core?

- *G* and *G*_{core} are homomorphically equivalent, i.e., $G \rightarrow G_{core}$ and $G_{core} \rightarrow G$.
- Test whether G has homomorphism to H is equivalent to testing G_{core} → H_{core}.
- Cores are the smallest graphs (in the number of vertices) in the class of homomorphism equivalence.
- Core is the smallest representative element in category theory.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

R-core R-reduced graph Cocore

Outline

- Homomorphisms and Relations
- 3 Computational Complexity
- 4 Core, Cocore, R-core
 - R-core
 - R-reduced graph
 - Cocore

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

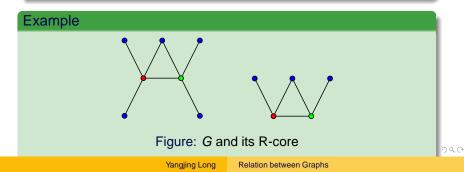
Э

R-core R-reduced graph Cocore

Definition

Two graphs *G* and *H* are relationally equivalent, $G \backsim H$, if there are relations *R* and *S* such that G * R = H and H * S = G. If *R* and *S* are full, we write $G \backsim_f H$.

An R-core of a graph G, $G_{\text{R-core}}$, is the smallest graph in the same equivalence class of \backsim_f as G.



R-core R-reduced graph Cocore

R-core is unique up to isomorphism.

Proposition

 G_{R-core} is isomorphic to an induced subgraph of G.

If *G* is an R-core, then every relation *R* such that G * R = G satisfies the Hall condition and thus contains a monomorphism.

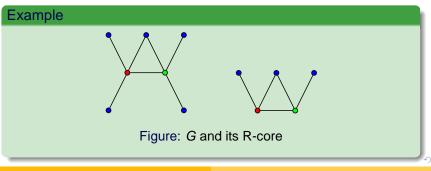
・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

-

R-core R-reduced graph Cocore

Proposition

 $G_{R\text{-core}}$ can be characterized by an algorithm, which removes all vertices $v \in G$ such that (1) the neighborhood of v is union of neighborhood of some other vertices $v_1, v_2, \leq v_n$ and (2) there is vertex u such that $N_G(v) \subseteq N_G(u)$.



Yangjing Long Relation between Graphs

a (~

R-core R-reduced graph Cocore

Outline

- Homomorphisms and Relations
- 3 Computational Complexity
- Core, Cocore, R-core
 - R-core
 - R-reduced graph
 - Cocore

・ ロ ト ・ 雪 ト ・ 目 ト

Э

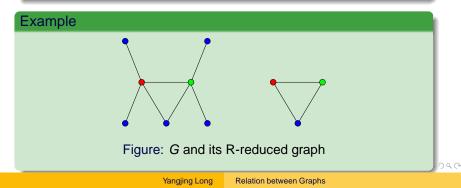
R-core R-reduced graph Cocore

Definition

A graph $G_{\text{R-reduced}}$ is **R-reduced** graph of *G* iff it is the smallest subgraph of *G* which has relation to *G*.

Proposition

a graph is R-reduced if and only if it is a graph core.



R-core R-reduced graph Cocore

Outline

- Homomorphisms and Relations
- 3 Computational Complexity
- Core, Cocore, R-core
 - R-core
 - R-reduced graph
 - Cocore

・ ロ ト ・ 雪 ト ・ 目 ト

Э

R-core R-reduced graph **Cocore**

There is always homomorphism from subgraph to graph.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

R-core R-reduced graph Cocore

There is always homomorphism from subgraph to graph. This is not always the case with relations. We can reverse the notion of core to get...

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

≡ nar

R-core R-reduced graph Cocore

There is always homomorphism from subgraph to graph. This is not always the case with relations. We can reverse the notion of core to get...

Figure: From football to mathematics

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

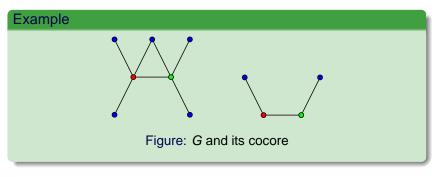
-

R-core R-reduced graph Cocore

Definition

A cocore of graph G is the smallest subgraph of G which has relation to G.

Cocore is unique up to isomorphism.



・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

R-core R-reduced graph Cocore

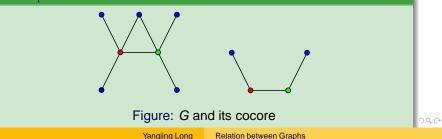
Proposition

G is a cocore if and only if any vertex neighborhood is not the union of other vertex neighborhoods.

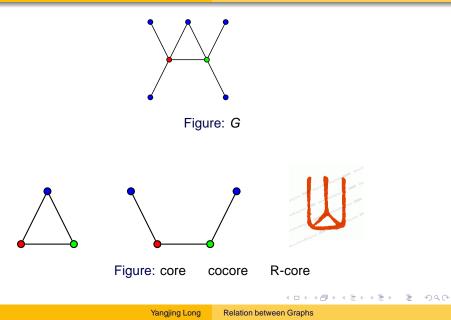
Proposition

Cocore of G is the smallest member of the equivalence class of relational equivalence \backsim .

Example



R-core R-reduced graph Cocore



R-core R-reduced graph Cocore

Thank you!

Yangjing Long Relation between Graphs

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

Э

5900